Trading API

Table of Contents

Get started
Overview
Requirements
License
Communication
Security
Configuration
Session TAN
Usage of the Trading API
Source code
Initialization
Services and functions definition
Create services
Objects creation
Pull and push functions
Pull requests
Push requests
Push subscriptions
Services and functions
Access service
Client validation
Client invalidation
Account service
Get list of trading accounts
Stream account information changes
Stream account transactions changes
Stock exchange service
Get information about all stock exchanges
Get information about specific stock exchange
Depot service
Stream depot changes
Update depot
Security service
Securities access
Get security information
Stream market data information
Stream orderbook data

Stream currency rate

© © o U1 U1 U1 W N R R R R

W W W W DN DN DN DN DN DN DNDNDNDNDDNDNDDNR B = = = = =
D U1 N R, O O O NN N0 U WWN R, O OO O WN DN e

Get security historicdata. 38

Order SEIVICE. 39
Order types and parameters. 39
Stream OTAerS. 41
Update OTders. 42
Get SeCUTrIties qUOTES. 42
ACCEPt QUOTE . . . e 46
Add Order 47
Change Order 49
Cancel Order 50
Activate Order. 51
Deactivate OTder 52
Order COSES . . .ot 53

Er 0TS . 60
Objects and types desCription 61

AcceptQuoteRequest 61

AccessTOKENREQUEST o 62

ActivateOrderRequUest. 62

AggregatedCoStS 63

AddOrderReqUEeSst 64

CancelOrderRequest 65

CashQUOLAtION 66

CategoryCoSt o 66

ChangeOrderRequUeSst 66

CurrencCyRateRePLY o 67

CurrencyRateRequest e 67

DAt . 67

DeactivateOrderRequest 68

DepOtENTIIeSo 68

D PO ey, 68

DepotPOSItION 69

DetailCost. . ..o 69

Bty e 70

53 0) 70

LimitToRen . ..o 70

LOoginRePLY . . 70

LOgINREqUEST.o 70

LOgOUtREPLY. « . 71

LogoutReqUest e 71

OTder. . . 71

OrderCosts

OrderModel

OrderReply

Orders

OrderStatus
OrderSupplement
OrderType

PriceEntry

QuoteEntry

QuoteReply

QuoteRequest
SecurityChangedField
SecurityClass

SecurityCode
SecurityCodeType
SecurityInfoReply
SecurityInfoRequest
SecurityMarketDataReply
SecurityMarketDataRequest
SecurityOrderBookReply
SecurityOrderBookRequest
SecurityPriceHistoryReply
SecurityPriceHistoryRequest
SecurityStockExchangelInfo
SecurityWithStockExchange
ShortMode

StockExchange
StockExchangeDescription
StockExchangeDescriptions
StockExchangelnfo
StockExchangeRequest
TimeResolution

Timestamp

TradingAccount
TradingAccountInformation
TradingAccountRequest
TradingAccounts
TradingAccountTransactions
TradingPhase
TradingPossibility
TradingState

72
72
73
73
73
74
74
75
75
75
76
76
77
78
78
78
79
79
80
80
81
81
81
82
82
85
86
86
86
86
86
87
87
89
89
89
90
90
90
90
91

TrailingNotation. 91

TranSaCtioNo 91
UNItNOTE . . o 92
Validation.o 92

Questions and ANSWETS. o 92

Version: 0.2.1-SNAPSHOT

Get started

Overview

Trading API (TAPI) is a part of the standard Consorsbank trading application ActiveTrader /
ActiveTrader Pro. It allowes to write user managed application for the specific trading activities.
TAPI support pull / push requests and based on the Google Remote Procedure Call (GRPC)
technology.

With help of the TAPI you have an access to the accounts, orders, depots and market data
information.

Important

This documentation is the description of the early version of Trading API. It’s not

0 final and it’s subject to change. With the lookback to the new BaFin regulation it’s
especially important to understand that the ordering part of the TAPI can be
partially changed to fullfil new law directives.

Additional information and discussions can be found there. Please contact to the support team to
get access to this part of the community.

Requirements

* Active Trader / Active Trader Pro with Java 8 64 bits, minimum 8Gb RAM

* Client CSharp / .NET Framework 4.7.X or higher / .Net Core SDK 2.1 or higher (Visual Studio
Community Edition 2017)

License

Trading-API is licensed under Apache 2.0 license.

The license and notice texts can be found in the delivered LICENSE and NOTICE.TXT files.

Communication

GRPC technology uses one connection to transfer all necessary data beetwen client and
ActiveTrader. As developer you don’t need to care about communication. All low level
communication, security and converting functions takes TAPI engine. You can concentrate on the
high level functions and bussines logic of the application.

https://www.consorsbank.de
https://grpc.io
https://wissen.consorsbank.de/t5/Trading-API-Family-Friends/gp-p/BNPP_GHM
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
http://www.apache.org/licenses/LICENSE-2.0

TAPI

[
[

Client i Marketdata + --4--------------------- T-- | Active
! I ittt ' Trader

GRPC

Security

TAPI uses HTTP/2 protocol with RSA protection. RSA self signed certificate can be generated directly
in the ActiveTrader application. Typical use case is to use user application from same PC, but it’s
also possible to connect from the remote machine.

Important

To accept self signed certificate from the user application is necessary to use

ﬁ trusted part of the RSA keys (Trust Certificate) by the connection initialization in
the client application. This certificate can be exported from the ActiveTrading
application.

—p Private key ——p ActiveTrader

A

Generate key

I
I
I
I
I
I
I access
I

I

L » Trust certificate ——p User application

To provide users access control can be used secret string. That’s an equivalent of password. Secret
is defined in the Active Trader and used only for validation. User application sends secret to the
ActiveTrader. If the validation in the ActiveTrader is passed then ActiveTrader generates a session
access token and returns it to the user application. With this token is possible to execute other
requests. After end of processing the token should be invalidated.

User application ActiveTrader

Secret >
Access token Secret validation
< 4+
Request(Access token) >
< Reply ‘J Access token validation
Invalidate(Access token)
b
Important
0 We don’t keep secret data in the configuration. Only double MD5 hash of the

secret + solt is stored in the configuration. As result we can’t restore the secret. For
more information see Defense against rainbow tables

Configuration

To activate TAPI is need to complete next steps:

Kaonfiguration x
Trading-API -

B Globale Einstellungen

— Aktualisierungen . B

Trading-API Aktiv

—Akustische Signale D a e

—Alarme

— Bestatigungen Encryption

— Bezeichnung Order Eingabe

Principal

— Druckeinstellungen
—Einstellungen Anzeige Handelsplatze “alid to

— Externe Schnittstelle

—Farben Secret Absent
— Fehlerprotokollierung

— Fenster Einstallungen Listen part R
— Investmentrechner
—Kurse GENERATE NEW KEY DELETE CERTIFICATE EXPORT TRUST CERTIFICATE

— One-Click-Trading

— Orderdefaults o
— Price check

— Schrift

— Speicher

— Suche

— Tastatur

— Trading-API

Dialoge
Fenster Einstellungen

Vorlagen

ZURUCKSETZEH ANWENDEHN

ABBRECHEN

@ Select Trading-API settings in the configuration
@

https://en.wikipedia.org/wiki/Rainbow_table#Defense_against_rainbow_tables

Activate TAPI checkbox
® Optional: if key exists, press [GENERATE NEW KEY] button

In the opened dialog

Generate new key x
Cotnmon Mame [host name] (CH) | localhost
Locality (L) o Huernberg
Caurtry Mame () DE
Encryption key size 2048 ~
wglicity in days 730 o
o GENERATE NEW KEY
e OK ABBRECHEN

@ Enter or correct key settings
@ Press [GENERATE NEW KEY] button and wait unil new key is generated

® Press [OK] button to accept new settings

After confirmation of the new settings TAPI will be activated.

Warning

A In some cases if any initialization errors are appear, the TAPI activation indication
in the status bar of the application will be red. To check activation problems move
mouse cursor over this indication and check tooltip for the error.

Before to start using client application, it’s need to export trusted certificate from ActiveTrader.

Konfiguration x

| | Trading-AP! -
B Globale Einstellungen
— Aktualisierungen
— Akustische Signale
—Alarme

— Bestdtigungen Encryption RSA, 2048 Bits
— Bezeichnung Order Eingabe

Trading-API Aktiv

— Druckeinstellungen Principal CH=localhost, L=Huernberg, C=DE

— Einstellungen Anzeige Handelsplitze “alid to 18.10.2020

— Externe Schnittstelle

—Farhen Secret Absent = o

— Fehlerprotokollierung -

— Fenster Einstellungen Listen port 40443 [

— Investmentrechner

[Kurse GENERATE HEW KEY DELETE CERTIFICATE EXPORT TRUST CERTIFICATE

— One-Click-Trading

— Orderdefaults e
— Price check

— Schrift

— Speicher

— Suche

— Tastatur

— Trading-API

Dialoge
Fenster Einstellungen
Vorlagen

ZURUCKSETZEH ANWENDEHN

ABBRECHEN

@ Set secret for an access control. Longer string is better.

@ Press [EXPORT TRUST CERTIFICATE] and store file (for example with name: roots.pem) to the
location where client application can use it.

Session TAN

Some operations of the TAPI can be used without TAN. All activities with the necessity of the
autorisation are need to use of the session TAN.

Important

0 Do not forget to activate session TAN. It’s not possible to use individual TAN’s with
TAPI

Usage of the Trading API

Source code

An example aplication is delivered with precompiled GRPC libraries. If you want to generate source
code by youself you can use protobuf files from protobuf directory. Please refer to the C#
Quickstart.

https://grpc.io/docs/quickstart/csharp.html
https://grpc.io/docs/quickstart/csharp.html

Initialization

To initialize client application and connect to the ActiveTrader with help of TAPI you have to
process next steps:

Initialize GRPC —» Create service client —p Call functions

Important

All examples are avialable as a sorce code and can be found in the specific folders.
0 Input point is the file Program.cs

To start an appication you have to define location of the trust certificate and set
secret. See properties item of the contect menu of the

Solution Explorer

far O

¥ tion TapiCSharp' (2 projects)
B TapiCore

b TestClir—

&y Build

Rebuild

Publish...

Sc ape to This

Rename

Unload Project

Properties

Open Folder in File Explorer
- _

TestClient Proj Refactor
o5 (B, @ R i
esl|z ' Edit project item properties
B General Collapse Al
Auto-Generat

o Misc Properties Alt+Enter

o TestClient & X Program.cs

Application
i MN/A N/A
Build
Build Events
Profile: | TestClient |
Package
Debug Launch: [Prnject v]
Signing o - : - =
Application arguments: C:\Deploymentigrpciroots pem 1234567
Resources
Wworking directory:

Initialize the root GRPC engine with trusted certificate, exported from configuration dialog of the
ActiveTrader.

Example C#: Initaialize GRPC

using System;

using System.Collections.Generic;

using System.IO;

using Grpc.Core;

using Com.Consorsbank.Module.Tapi.Grpc;
using System.Threading.Tasks;

using System.Threading;

using Microsoft.CSharp.RuntimeBinder;

class Program : IDisposable

{
private static readonly Empty empty = new Empty();

private readonly Channel channel;

private readonly StockExchangeService.StockExchangeService(Client
stockExchangeServiceClient;

private readonly DepotService.DepotServiceClient depotServiceClient;

private readonly SecurityService.SecurityServiceClient securityServiceClient;

private readonly OrderService.OrderServiceClient orderServiceClient;

nn

private readonly string _accessToken = "";

public Program(string host, int port, string trustCertificate, string secret)

{
SslCredentials channelCredentials = new SslCredentials(trustCertificate); @
channel = new Channel(host + ":" + port, channelCredentials); @

this._accessToken = Login(secret);
if (this._accessToken == null)
{
throw new RuntimeBinderException("Error by login");

}

stockExchangeServiceClient = new StockExchangeService
.StockExchangeServiceClient(channel);

depotServiceClient = new DepotService.DepotServiceClient(channel);

securityServiceClient = new SecurityService.SecurityServiceClient(channel);

orderServiceClient = new OrderService.OrderServiceClient(channel);

}
public void Dispose()
{
Logout();
channel?.ShutdownAsync().Wait(); ®
}
public static void Main(string[] args)
{
if (args.Length<2)
{
Console.WriteLine("Please generate key in AT and" +
"put location of the trust certificate and secret as an argument");
return;
}
string trustCertificate = File.ReadAllText(args[0]); @
using (Program program = new Program(“localhost", 40443,
trustCertificate, args[1])) { ®
/] ...
}
}

@ Create creditionals
@ Create comminication channel
® Close comminication channel

@ Get trusted certificate location as a parameter of the command line

® Create an instance of the program

Services and functions definition

After an initialization is GRPC ready and it can be used for the building service stubs to operate
with TAPI services. Stubs are sets of service functions with help of then is possible to access data
and execute user actions. They are very similar to the normal programming functions with small
differences.

* Each remote function can have one (and only one) input parameter.
* Each remote function can have one (and only one) result parameter.

* The function can send data asynchronically

Functions can be simple (one request — one reply), server sends events (one request from client -
many replies from server), client sends events (many requests from client — one reply from server)
or server and clients sends events (many requests from client - many replies from server). TAPI
uses only first and second types of functions. First type of the function used for the simple user
activity (pull) and second type for subcriptions or streaming (push).

Services and functions are defined in the special files as protobuf protocol v.3

Example Protobuf: RPC definition

service ServiceName { @
rpc SimpleFunction(ClientParameterTypel) returns (ServerParameterTypel); @
rpc PushFunction(ClientParameterType2) returns (stream ServerParameterType2); @

}

@ ServiceName is service stub name. This name will used for the access to the service functions
@ SimpleFunction is simple request / reply function.

® PushFunction is push function with one request and streams data from the server. Please check
stream keyword before ServerParameterType2

Important

You don’t need to use protobuf files directly, but it’s good idea to know a syntax of

O the the protocol. These files are need if you want to use TAPI with other progaming
languages. grpc.io conatains all necessary infomation about code generation and
usage for all supported programming languages.

Create services

There are two types of the service functions: blocking and unblocking service functions. Blocking
service functions are used for the synchronical answer from the function and similar to the typical
program functions. By call of the blocking functions, program waits until a result of the function is
arrived. It can produce timeouts by the execution. Unblocking function are used for the background
processing. In this case a program don’t wait until result is arrived and listen for the result

https://developers.google.com/protocol-buffers/docs/proto3
https://grpc.io

asynchronically. This type of the stubs is used for the push functions. For more information please
refer to the grpc.io web site.

Blocking calls can be used directly. For asynchronical calls are defined helper classes to simplify an
access logic.

Example C#: StreamObserver for push streams

using System;

using System.Collections.Generic;
using Grpc.Core;

using System.Threading.Tasks;
using System.Threading;

public abstract class StreamObserver<TClient, TRequest, TReply> where TClient :
ClientBase<TClient>
{
// Define delegates
public delegate void ResultListener(TReply reply); @
public delegate AsyncServerStreamingCall<TReply>
Call(TRequest request, CancellationToken token); @

private readonly TClient _client;
private readonly Call _caller;

protected StreamObserver(TClient client, Call caller)
{

this. client
this. _caller

client;
caller;

}

public async Task Stream(TRequest request, ResultlListener listener,
CancellationToken token = default(global::System.Threading.CancellationToken))
{
try
{
using (AsyncServerStreamingCall<TReply> call = _caller(request, token)) ®
{
var responseStream = call.ResponseStream; @
while (!token.IsCancellationRequested && await responseStream.
MoveNext()) ®

{
{
TReply reply = responseStream.Current; ®
listener?.Invoke(reply); @
}
}
}
}
catch (RpcException e)
{

10

https://grpc.io

if (e.StatusCode!=StatusCode.Cancelled)

{
Console.WriteLine(e);
throw;
}
}
catch (Exception e)
{
Console.WriteLine(e);
throw;
}

@ Define delegate for the listener

@ Define deligate for the function call
® Create streaming call

@ Get response stream

® Wait for the next event asyncronically
® Get result

@ Sent result to the listener

Process error

Objects creation

Objects in the GRPC world are immutable (or not changable). All fields of the object are filled by

object creation.

Example C#: Create object

SecurityMarketDataRequest marketDataRequest = new SecurityMarketDataRequest() @

{
SecurityWithStockexchange = new SecurityWithStockExchange @

{
SecurityCode = new SecurityCode ®
{
Code = "710000",
CodeType = SecurityCodeType.Wkn
b
StockExchange = new StockExchange @
{
Id = stockExchangeld,
Issuer = ""
i
}

11

@ Create security market data request
@ Initialize security code with stock exchange field
® Initialize security code as field of the security code with stock exchange

@ Initialize stock exchange as field of the security code with stock exchange

Important

0 Please refer to the protobuf3 protocol to check fields mapping and default values
for the parameters.

Important

0 It’s necessary to fill only parameters that need for the function call. All other
parameters should stay untouched or should have default values.

Pull and push functions

There is two possibilites to call remote function.

Pull requests

The first one is using blocking service stub. In this case an operation blocks program execution
until results are arrived.

Blocked service stub —p Call function —

Results 4+

12

https://developers.google.com/protocol-buffers/docs/proto3

Example C#: Blocking execution

private static readonly Empty empty = new Empty();

public TradingAccounts GetTradingAccounts()
{

var accountServiceClient =

new AccountService.AccountServiceClient(channel); @®
var accessToken = new AccessTokenRequest()

{

AccessToken = this. _accessToken @

};

return accountServiceClient.GetTradingAccounts(accessToken); @

@ Create account service client
@ Set access token

® Request trading accounts and wait the result

Q Useful

Typical use case is to get clients once and keep it during one connection session.

Push requests

Other possibility is not to wait for the results, but listen for then asynchronically.

Non blocked service stub —»

Call function async ---p

“7

——————————

Results

13

Example C#: Noblocking execution
private static readonly Empty empty = new Empty();

public Task<TradingAccounts> GetTradingAccountsAsync()
{

var accountServiceClient =

new AccountService.AccountServiceClient(channel); @®
var accountStreamer = new AccountsStreamer(accountServiceClient); @
CancellationTokenSource tokenSorce = new CancellationTokenSource(); ®
var accessTokenRequest = new AccessTokenRequest()

{
AccessToken = _accessToken

b

var backgroundTask = accountStreamer.Process(accessTokenRequest,
accounts => Console.WritelLine(accounts), @
tokenSorce.Token);

return backgroundTask; ®

@ Create service client (can be done once)
@ Create help streamer (can be done once)
® Create cancel source to control execution

@ Set delegate to process results. Called after processing end. No new result are comming
anymore. The task is finished.

® Return task back. Can be used for await

The results are comming only once. The operation will be automatically completed. A cancel token
is optional parameter. To execute this example are additional classes need.

Example C#: AccountsStreamer

public class AccountsStreamer :
AsyncObserver<AccountService.AccountServiceClient, AccessTokenRequest,
TradingAccounts> @

{
public AccountsStreamer(AccountService.AccountServiceClient client) : @
base(client, (request, token) =>
client.GetTradingAccountsAsync(request, null, null, token))
{1}
+

@ Account streamer takes 3 parameters to execute: client, request and reply

@ Implementation of the asyncronical request (overloaded function)

AsyncObserver is helper class to process asyncronical requests.

14

Example C#: AsyncObserver

public abstract class AsyncObserver<TClient, TRequest, TReply> where TClient :
ClientBase<TClient>
{

// Define delegates

public delegate void ResultListener(TReply reply); @

public delegate AsyncUnaryCall<TReply> Call(TRequest request, CancellationToken
token); @

private readonly TClient _client;
private readonly Call _caller;

public AsyncObserver(TClient client, Call caller)
{

this. client
this. caller

client;
caller;

}

public async Task<TReply> Process(TRequest request, ResultlListener listener,
CancellationToken token = default(global::System.Threading.CancellationToken))

{
try
{
using (AsyncUnaryCall<TReply> call = _caller(request, token)) ®
{
var responseStream = call.ResponseAsync; @
await responseStream; ®
if (!responseStream.IsCanceled)
{
listener?.Invoke(responseStream.Result); ®
}
return responseStream.Result;
+
}
catch (RpcException e)
{
if (e.StatusCode != StatusCode.Cancelled)
{
Console.WriteLine(e); @
throw;
} else
{
return default(TReply);
}
}
catch (Exception e)
{
Console.WriteLine(e);
throw;
}

15

@ Define delegate for the listener

@ Define deligate for the function call
® Create streaming call

@ Get response stream

® Wait for the event asyncronically
® Get result and send it to the listener
@ Process rpc error

Process application error

Push subscriptions

In some cases server can sent more then one answer or streams the data. This case is simular t
requests, but has some differences.

e It can come more then one results answer back

* Server can send "break" notification to the client if no data is exist anymore

* Client can send "break" notification to the server if no data is need anymore. See ServerSubs

I

Non blocked service stub —» Subscribe for data SEE : Process :
I

I

[Listener Jd— Results 4— Results 4— Results

Push subscriptions can be done with help of StreamObserver. This absract class can be used to
build real streamer classes. Next example shows how to use it to get market data information.

16

Example C#: MarketDataStreamer

public class MarketDataStreamer : @
StreamObserver<SecurityService.SecurityServiceClient,
SecurityMarketDataRequest, SecurityMarketDataReply>

{
public SecurityMarketDataRequest GetRequestWithWknAndStockId(
string accessToken, string wkn, string stockId) @
{
SecurityMarketDataRequest marketDataRequest = new SecurityMarketDataRequest()
®
{
AccessToken = accessToken,
SecurityWithStockexchange = new SecurityWithStockExchange @
{
SecurityCode = TestUtils.GetSecurityCode(wkn, SecurityCodeType.Wkn),
StockExchange = TestUtils.GetStockExchange(stockId, null)
}
i
return marketDataRequest;
}
public MarketDataStreamer(SecurityService.SecurityServiceClient client) : ®
base(client, (request, token) => client.StreamMarketData(request, null, null,
token))
{1}
}

@ Define class with client, request and reply types
@ Help function to simplify creation of the request
® Create request

@ Fill request fields

® Request data from server

Market data streamer allowes to subscribe for quotes for many securities

17

Example C#: MarketDataStreamer
private readonly SecurityService.SecurityServiceClient securityServiceClient;

private async Task StreamMarketDataAsync()

{
MarketDataStreamer marketDataStreamer =
new MarketDataStreamer(securityServiceClient); @
SecurityMarketDataRequest marketDataRequestTRG = @
marketDataStreamer.GetRequestWithWknAndStockId(_accessToken, "710000", "TRG");
CancellationTokenSource tokenSourcel = new CancellationTokenSource(); ®
Task tickerTaskl = marketDataStreamer.Stream(@
marketDataRequestTRG,
reply => Console.WriteLine("Source (1): " + reply), ®
tokenSource?.Token);
SecurityMarketDataRequest marketDataRequestOTC = ®
marketDataStreamer.GetRequestWithWknAndStockId(_accessToken, "710000", "0TC");
CancellationTokenSource tokenSource?2 = new CancellationTokenSource();
Task tickerTask?2 = marketDataStreamer.Stream(@
marketDataRequest0TC,
reply => Console.WriteLine("Source (2): " + reply),
tokenSource?.Token);
await Task.Delay(10000);
tokenSourcel.Cancel(); ©
await Task.Delay(20000);
tokenSource?.Cancel();
+

@ Create market data streamer (can be reused)

@ Create request on ETR

® Create cancelation token

@ Stream data

® Process quote tick

® Create request on OTC

@ Stream data

Wait a while. Events from both subscription should be processed

© Cancel subscription for ETR

18

Useful

Q You can modify existing code or write another code to simplify access to the

service functions.

Services and functions

Access service

Access service provides functionality to validation / invalidation of the client.

Table 1. AccessService

Function Description

LoginReply = Validates client by the TAPI and gets access data
Login(LoginRequest)

LogoutReply = Invalidates client by the TAPI and gets logout result

Logout(LogoutRequest)

Client validation

Client validation should be a first request after connection initalization. To validate client you have
to set a secret that was set in the ActiveTrader configuration and process a login function. As result
of this function returned session access token. This token is necessary to set to each request that

will be send by TAPIL.

19

Example C#: Login

private readonly string _accessToken = "";

public string Login(string secret)

{
var accessServiceClient =
new AccessService.AccessServiceClient(channel); @
var loginRequest = new LoginRequest()
{
Secret = secret @
Ir5
var loginReply = accessServiceClient.Login(loginRequest); @
if (loginReply.Error != null)
{
// Error handling
Console.WritelLine(loginReply.Error);
return null;
}
else
{
return loginReply.AccessToken; @
}
}

@ Create service client
@ Set secret
® Process validation

@ Return access token

Client invalidation

After finishing of usage of the TAPI is necessary to invalidate session. That can be done with help of
the logout function.

20

Example C#: Logout

public void Logout()

{
if (this._accessToken != "")
{
var accessServiceClient =
new AccessService.AccessServiceClient(channel); @
var logoutRequest = new LogoutRequest()
{
AccessToken = _accessToken @
};
accessServiceClient.Logout(logoutRequest); @
}
+

@ Create service client
@ Set token

® Process invalidation

Account service

Account service provides access to the trading accounts and gives possibility to access to the
accounts data and transactions.

Table 2. AccountService

Function Description

TradingAccounts = Gets trading accounts

GetTradingAccounts(Ac

cessTokenRequest) @return TradingAccounts List of trading accounts

TradingAccountInform Subscribes one trading account for updates

ation «

StreamTradingAccount(@param TradingAccount Trading account for push

TradingAccountRequest

) @stream TradingAccountInformation Specific information for
subscribed account (balance, kredit line, etc.)

TradingAccountTransa Subscribes one trading account for the transactions updates

ctions «

StreamTradingAccount @param TradingAccount Trading account for push

Transactions(TradingA

ccountRequest) @stream TradingAccountInformation Transactions list for subscribed
account

To subscribe for the account and transactions changes you have to get trading accounts and
subscribe each account with help of steam functions for data changes independently.

21

GetTradingAccounts

subscribe
for each ¢ ¢

StreamTradingAccount StreamTradingAccountTransactions

v V

Account updates Transactions updates

Get list of trading accounts

Many activites need information about an account data. Most important information is a trading
account number. To get list of all avialable trading accounts you have to use Get Trading Accounts
function.

Example C#: GetTradingAccounts
private static readonly Empty empty = new Empty();

public TradingAccounts GetTradingAccounts()

{
var accountServiceClient =
new AccountService.AccountServiceClient(channel); @
var accessToken = new AccessTokenRequest()
{
AccessToken = this. accessToken @
Iy
return accountServiceClient.GetTradingAccounts(accessToken); @
+

@ Create account service client

@ Request trading accounts and wait the result

Important

ﬂ Not all accounts in the pro version of the ActiveTrader can be used for the trading
functionality. Please refer to the TradingAccount and check for the access
avialibility of the selected account (flag: tradable).

22

Useful

Q Typical use case is to get this information once and keep it during one connection
session.
Stream account information changes

To get pushed trading account information is need to subscribe an account for the trading account
stream.

Example C#: GetTradingAccounts

public TradingAccounts GetTradingAccounts()

{
var accountServiceClient =
new AccountService.AccountServiceClient(channel); @
var accessToken = new AccessTokenRequest()
{
AccessToken = this. accessToken @
bf
return accountServiceClient.GetTradingAccounts(accessToken); ®
+

@ Create service client
@ Set access token

® Process remote request

Stream account transactions changes

To get pushed trading account transactions list is need to subscribe account for trading account
transactions stream.

23

Example C#: StreamTradingAccountInformation

public void StreamTradingAccountInformation()
{
TradingAccounts tradingAccounts = GetTradingAccounts(); @
var accountServiceClient = @
new AccountService.AccountServiceClient(channel);
AccountInformationStreamer streamer = ®
new AccountInformationStreamer(accountServiceClient);
foreach (var account in tradingAccounts.Accounts) @

{

var tradingAccountRequest = new TradingAccountRequest()

{
AccessToken = _accessToken,
TradingAccount = account

¥

Task task = streamer.Stream(tradingAccountRequest, ®
accountInfomation =>

{
TradingAccount recievedAccount = accountInfomation.Account; ®
double balance = accountInfomation.Balance;
/] ...
Console.WriteLine(accountInfomation);

1)

@ Get trading accounts

@ Create client (it can be resused)

® Create account infomation streamer
@ Iterate over each account

® Subscribe account

® Process account information events with help of the delegator
AccountsStreamer is the help class to encapsulate typical processing with the stream data.

Example C#: AccountsStreamer

public class AccountsStreamer :
AsyncObserver<AccountService.AccountServiceClient, AccessTokenRequest,
TradingAccounts> @

{
public AccountsStreamer (AccountService.AccountServiceClient client) : @
base(client, (request, token) =>
client.GetTradingAccountsAsync(request, null, null, token))
{1}
}

24

@ Define class with client, request and reply types

@ Request data from server

In some cases is need to stop data streaming. In this case it can be used CancellationTokenSource
that will used by stream creation.

Example C#: GetTradingAccounts

public void StreamTradingAccountInformationWithStop(TradingAccount account)
{
var accountServiceClient = @
new AccountService.AccountServiceClient(channel);
AccountInformationStreamer streamer = @
new AccountInformationStreamer(accountServiceClient);
var tradingAccountRequest = new TradingAccountRequest()
{
AccessToken = _accessToken,
TradingAccount = account
Jrs

CancellationTokenSource tokenSource = new CancellationTokenSource(); ®

Task task = streamer.Stream(tradingAccountRequest, @
accountInfomation =>

{
TradingAccount recievedAccount = accountInfomation.Account; ®
double balance = accountInfomation.Balance;
/] ...
Console.WriteLine(accountInfomation);
I

tokenSource.Token); ®

tokenSource.Cancel(); @

@ Get trading accounts

@ Create client (it can be resused)

® Create CancellationTokenSource

@ Create account infomation streamer
® Subscribe account

® ... with cancelation token

@ Cancel stream processing

Stock exchange service

StockExchange service provides access to the stock exchanges.

Table 3. StockExchangeService

25

Function Description

StockExchangeDescript Gets predefined stockexchages

ions =

GetStockExchanges(Acc @return StockExchangeDescriptions list of stock exchange informations
essTokenRequest)

StockExchangeDescript Gets specific stock exchange
ion =
GetStockExchange(Stoc @param StockExchange Requested stock exchange
kExchangeRequest)
@return StockExchangeDescription Stock exchange information

Get information about all stock exchanges

TAPI has list of predefined stock exchanges that can be fetched directly. Each stock exchange has id
and optional issuer. Some stock exchanges have identical id’s, but different issuers. For examples:

id issuer shortcut id stock exchange name

ETR ETR Xetra

OTC BAAD BAA Baada bank on OTC

OTC 7649 LUS Lang und Schwarz

OTC 7004 Commerzbank

OTC OTC Any issuer on OTC
Useful

Q It’s possible to use shortcut id, if it exists, to access to the same stock exchange. For

example stock exchange ("OTC", "BAAD") equivalent to the stock exchange
("BAA",")

These stock exchanges can be requested with help of Get Stock Exchanges function. As a result
will delivered stock exchanges with names.

Example C#: getStockExchanges()

private readonly StockExchangeService.StockExchangeServiceClient
stockExchangeServiceClient;

public StockExchangeDescriptions GetStockExchanges()

{
AccessTokenRequest request = new AccessTokenRequest() @D
{
AccessToken = _accessToken
b
return stockExchangeServiceClient.GetStockExchanges(request); @
}

@ Prepare request

26

@ Call remote function

Q Useful
This information can be stored and reused in the user application.

Get information about specific stock exchange

It’s also possible to get information about one specific stock exchange. Next example shows how to
request stock exchange information about Baada issuer on the OTC:

Example C#: GetBaadaStockExchangeInformation()

private readonly StockExchangeService.StockExchangeServiceClient
stockExchangeServiceClient;

public StockExchangeDescription GetBaadaStockExchangeInformation()

{
StockExchange stockExchange = new StockExchange() @
{
Id = "0TC",
Issuer = "BAAD"
ki
StockExchangeRequest request = new StockExchangeRequest() @
{
AccessToken = _accessToken,
StockExchange = stockExchange
i
return stockExchangeServiceClient.GetStockExchange(request); ®
}

@ Prepare Baada on OTC stock exchange

@ Prepare request

® Request information about stock exchange

Depot service

With help of the depot service is possible to stream information about depot entries. Depot service

has next functions:

Stream depot changes

Table 4. DepotService

27

Function Description

DepotEntries « Subscribes one trading account for the depot data updates
StreamDepot(TradingA
ccountRequest) @param TradingAccount Trading account for push

@stream DepotEntries depot entries linked to the account

Empty = Initiates depot update action. All changes come by the StreamDepot
UpdateDepot(TradingA subscription. This function doesn’t wait for the action result.
ccountRequest)

@param TradingAccount Trading account for update

Example C#: StreamDepotData()
private readonly DepotService.DepotServiceClient depotServiceClient;

private async Task StreamDepotData()
{
var tradingAccounts = GetTradingAccounts(); @
DepotStreamer depotStreamer = new DepotStreamer(depotServiceClient); @
List<CancellationTokenSource> cancellationTokens = new List
<CancellationTokenSource>();
foreach (var tradingAccount in tradingAccounts.Accounts) @

{
var tradingAccountRequest = new TradingAccountRequest() @
{
AccessToken = _accessToken,
TradingAccount = tradingAccount
b
CancellationTokenSource tokenSource = new CancellationTokenSource(); ®
cancellationTokens.Add(tokenSource);
var stream = depotStreamer.Stream(tradingAccountRequest, ®
depotEntries => Console.WriteLine(@
"Account:" + depotEntries.Account + ", Data:" + depotEntries),
tokenSource.Token);
}

await Task.Delay(10000);

foreach (var cancellationTokenSource in cancellationTokens) ©

{

cancellationTokenSource.Cancel();

}

@ Get trading accounts
@ Greate depot streamer
® Iterate throw all trading accounts

@ Create request

28

® Create cancelation source (to stop streams)

® Subscribe for stream, but don’t wait for results
@ Process callback by data change (listen callback)
Wait, for tests proposals

@ Cancel all streams

Update events are delivered on each depot entry change and contain information about whole
depot.

Example C#: DepotObserver

public class DepotStreamer :
StreamObserver<DepotService.DepotServiceClient, TradingAccountRequest,
DepotEntries> @

{
public DepotStreamer(DepotService.DepotServiceClient client) : @
base(client, (request, token) =>
client.StreamDepot(request, null, null, token))
{
}
}

@ Define class with client, request and reply types

@ Request data from server

Update depot

Sometime is necessary to update depot manually. To initiate this update you have to call
UpdateDepot function. This function takes trading account as input parameter and doesn’t deliver
any results. It’s also don’t wait for the results. All changes are delivered directly to the depot
listeners in the background.

Warning

A This function used for the compatibility proposals and can be removed in the
future versions of the TAPI.

Security service

Securities access

All securities can be accessed with help of security codes. Typical trading securities codes are WKN
and ISIN. TAPI is able to operate with additional security code types:

Security code type Tradable Description

WKN Yes WKN

29

Security code type Tradable Description

ISIN Yes ISIN

ID_NOTATION No FactSet id notation

ID _OSI No FactSet id osi

ID_INSTRUMENT No FactSet id instrument

MNEMONIC No German short id

MEMONIC_US No US short id (only for us
instruments)

Security code can be created with help of next code.

Example C#: GetSecurityCode()

public SecurityCode GetSecurityCode(string code, SecurityCodeType codeType)

{
return new SecurityCode() @

{
Code = code, @

CodeType = codeType @
b

@ Create SecurityCode object
@ Set security code

® Set security code type (WKN, ISIN, . . .). If type is not defined or unknown then please use
NoCodeType

Important

In some cases TAPI can guess security code type by input security code value. In

ﬂ this case the security code type should be set to NO_CODE_TYPE value. Please care
that’s not guaranty right detection of the security code. The good practice is to use
security code type by the building of the security code object.

Security service contains next functions:

Table 5. SecurityService

Function Description

SecurityInfoReply = Gets security information about security

GetSecurityInfo(Securit

yInfoRequest) @param SecurityInfoRequest Request object with interested security

@return SecurityInfoReply Complete information about security

30

Function

SecurityMarketDataRep
ly «
StreamMarketData(Sec
urityMarketDataReque
st)

SecurityOrderBookRepl
y &

StreamOrderBook(Secu
rityOrderBookRequest)

CurrencyRateReply «
StreamCurrencyRate(C
urrencyRateRequest)

SecurityPriceHistoryRe
ply =
GetSecurityPriceHistor
y(SecurityPriceHistory
Request)

Description

Subscribes security with stock exchange for market data updates

@param SecurityMarketDataRequest Market data request with
interested security and stock exchange

@stream SecurityMarketDataReply Reply with all market data values

Subscribes security with stock exchange for orderbook updates

@param SecurityOrderBookRequest Orderbook data request with
interested security and stock exchange

@stream SecurityOrderBookReply Reply with all orderbook values

Subscribes for currency rate from one currency to another currency.

@param SecurityOrderBookRequest currency rate request with
interested currencies from/to

@stream CurrencyRateReply reply with currency rate

Requests history data for one security on one stockexchange in intraday
or historical format

@param SecurityPriceHistoryRequest Data with security, stockexchange,
how many days and resolution

@return SecurityPriceHistoryReply List of the historical quotes or an
error

Get security information

Security information can be requested with help of GetSecurityInfo function. As a result will
delivered security name, class, codes and stock exchanges with trading possibilites. This
information can be used by the ordering. It also contains data about tradabity on the different
markets and by different issuers. The flags LimitToken with values QUOTE_ONLY and
LIMIT_AND_QUOTE show if for the security is possible to use quote buy and sell on the selected
market by the selected issuer. For more information please see GetQuote and AcceptQuote

functions.

31

Example C#: RequestSecurityInfo()
private readonly SecurityService.SecurityServiceClient securityServiceClient;

public SecurityInfoReply RequestSecurityInfo(string code, SecurityCodeType codeType)

{
SecurityCode securityCode = new SecurityCode() @®

{

Code = code,
CodeType = codeType

};

SecurityInfoRequest request = new SecurityInfoRequest() @
{

AccessToken = _accessToken,
SecurityCode = securityCode

};

return securityServiceClient.GetSecurityInfo(request); @

@ Create security code object
@ Create SecurityInfoRequest request

® Request security information

Stream market data information

To get pushed market data (push courses) is need to subscribe security and stock exchange for this
information with help of StreamMarketData function. SecurityMarketDataReply contains all

values, which were changed.

32

Example C#: StreamMarketData()
private readonly SecurityService.SecurityServiceClient securityServiceClient;

public CancellationTokenSource StreamMarketData(string code, SecurityCodeType
codeType,

string stockExchange, string currency)
{

SecurityWithStockExchange securityWithStockExchange = new
SecurityWithStockExchange() @

{
SecurityCode = new SecurityCode() @
{
Code = code,
CodeType = codeType
b
StockExchange = new StockExchange() ®
{
Id = stockExchange
}
1
SecurityMarketDataRequest request = new SecurityMarketDataRequest() @
{
AccessToken = _accessToken,
SecurityWithStockexchange = securityWithStockExchange,
Currency = currency == null ? "" : currency
b

MarketDataStreamer marketDataStreamer =
new MarketDataStreamer(securityServiceClient); ®

CancellationTokenSource tokenSource = new CancellationTokenSource(); ®
var task = marketDataStreamer.Stream(@
request,
reply => Console.WriteLine("Process tick: " + reply), ®
tokenSource.Token);

return tokenSource; ©

@ Create security with stock exchange object
@ Create security code object

® Create stock exchange

@ Create request

® Create streamer

® Create cancel token source

@ Start processing in background

33

Process tick

@ Return cancel token source
An example how it can be called is to see in the next example:

Example C#: ProcessMarketDataExample()

public void ProcessMarketDataExample()

{
CancellationTokenSource tokenSource = @
StreamMarketData("710000", SecurityCodeType.Wkn, "OTC", "");
System.Threading.Thread.Sleep(1000); @
tokenSource.Cancel(); ®
}

@ Call function syncronically and get cancel token source
@ Wait a while. Events from subscription should be processed

® Cancel streaming
Update events deliver changed market data values.

To subscribe for the market data information it is necessary to create SecurityWithStockExchange
object.

Example C#: GetSecurityWithStockExchange()

public SecurityWithStockExchange GetSecurityWithStockExchange(string code,
SecurityCodeType codeType,

string stockExchange, string issuer = "")
{
return new SecurityWithStockExchange() ®
{
SecurityCode = new SecurityCode() @
{
Code = code,
CodeType = codeType
I
StockExchange = new StockExchange() ®
{
Id = stockExchange,
Issuer = issuer == null ? "" : issuer
}
}i
}

@ Create security with stock exchange object

@ Create security code object

34

® Create stock exchange

Stream orderbook data

To get pushed orderbook data (second level push courses) is need to subscribe security and
stockexchange for this information with help of StreamOrderBook function.
SecurityOrderBookReply contains actual orderbook values. To create SecurityOrderBookRequest
is need to create SecurityWithStockExchange object first. Currently order book data supported only
on Xetra stock exchange.

Example C#: StreamOrderBook()
private readonly SecurityService.SecurityServiceClient securityServiceClient;

public CancellationTokenSource StreamOrderBook(string code, SecurityCodeType codeType,
string stockExchange, string currency)
{
SecurityWithStockExchange securityWithStockExchange = new
SecurityWithStockExchange() @

{
SecurityCode = new SecurityCode() @
{
Code = code,
CodeType = codeType
I
StockExchange = new StockExchange() ®
{
Id = stockExchange
}
b
SecurityOrderBookRequest request = new SecurityOrderBookRequest() @
{
AccessToken = _accessToken,
SecurityWithStockexchange = securityWithStockExchange,
Currency = currency == null ? "" : currency
b

OrderBookStreamer orderBookStreamer =
new OrderBookStreamer(securityServiceClient); ®

CancellationTokenSource tokenSource = new CancellationTokenSource(); ®
var task = orderBookStreamer.Stream(@
request,
reply => Console.WriteLine("Process tick: " + reply), ®
tokenSource.Token);

return tokenSource; ©

35

@ Create security with stock exchange object
@ Create security code object

® Create stock exchange

@ Create request

® Create streamer

® Create cancel token source

@ Start processing in background

Process tick

© Return cancel token source

Example C#: ProcessOrderBookExample()

public void ProcessOrderBookExample()

{
CancellationTokenSource tokenSource = @
StreamOrderBook("710000", SecurityCodeType.Wkn, "ETR", "");
System.Threading.Thread.Sleep(1000); @
tokenSource.Cancel(); ®
}

@ Call function syncronically and get cancel token source
@ Wait a while. Events from subscription should be processed

® Cancel streaming

Example C#: OrderBookStreamer

class OrderBookStreamer : @

StreamObserver<SecurityService.SecurityServiceClient, SecurityOrderBookRequest,
SecurityOrderBookReply>
{

public OrderBookStreamer(SecurityService.SecurityServiceClient client) : @
base(client, (request, token) => client.StreamOrderBook(request, null, null,
token))

{1}
}

@ Define class with client, request and reply types

@ Request data from server

Stream currency rate

It is possible to get pushed currency rate from one currency to other. This information can be used

36

for the realtime convertation of the money values.

Important

ﬂ For the market data quotes / order books it is possible to define target currency. It
this case the convertation will be processed automatically.

Example C#: StreamCurrencyRate()

private readonly SecurityService.SecurityServiceClient securityServiceClient;

public CancellationTokenSource StreamCurrencyRate(string currencyFrom, string

currencyTo)
{
CurrencyRateRequest request = new CurrencyRateRequest() @
{
AccessToken = _accessToken,
CurrencyFrom = currencyFrom,
CurrencyTo = currencyTo
b

CurrencyRateStreamer currencyRateStreamer =
new CurrencyRateStreamer(securityServiceClient); @

CancellationTokenSource tokenSource = new CancellationTokenSource(); ®
var task = currencyRateStreamer.Stream(@
request,
reply => Console.WriteLine("Process tick: " + reply), ®
tokenSource.Token);

return tokenSource; ®

@ Create request

@ Create streamer

® Create cancel token source

@ Start processing in background
® Process tick

® Return cancel token source

37

Example C#: CurrencyRateDataObserver

class CurrencyRateStreamer : @
StreamObserver<SecurityService.SecurityServiceClient, CurrencyRateRequest,

CurrencyRateReply>

{

public CurrencyRateStreamer(SecurityService.SecurityServiceClient client) : @
base(client, (request, token) => client.StreamCurrencyRate(request, null,
null, token))
{1}
}

@ Define class with client, request and reply types

@ Request data from server

Get security historic data

Security historic data can be requested with help of getSecurityPriceHistory() function. As a result
will delivered security with stock exchange, currency, historic data list. The parameter days defines
how many trading day will be requested. For intraday types of the time resolution this value should
be 15 or less. Be careful the amount of the data can be very big, especialy for intraday data with
tick resolution.

Example C#: GetSecurityPriceHistory()
private readonly SecurityService.SecurityServiceClient securityServiceClient;
public SecurityPriceHistoryReply GetSecurityPriceHistory(string code, SecurityCodeType

codeType,
string stockExchange, int days, TimeResolution timeResolution)

{
var securityWithStockExchange = @
GetSecurityWithStockExchange(code, codeType, stockExchange);
SecurityPriceHistoryRequest request = new SecurityPriceHistoryRequest() @
{
AccessToken = _accessToken,
SecurityWithStockexchange = securityWithStockExchange,
Days = days,
TimeResolution = timeResolution
b
return securityServiceClient.GetSecurityPriceHistory(request); &
}

@ Create security with stock exchange object
@ Create request

® Call function

38

Important

Q Last example will block program execution until the result is returned. Sometimes
to avoid timeouts by the listening it’s better to use non blocking calls.

Order service

With help of the order service is possible to execute, change, activate, deactivate or cancel orders.
It’s also allow to listen for the orders and to control them asyncronically.

Order types and parameters

TAPI allowes to execute different order types on the stock exchanges with different parameters.
Next tables shows what parameters are necessary (x) and optional (0) depends from selected stock
exchange and order model. The full list of order possibilites is delivered by the
GetSecurityInformation function.

Paramet Market Limit StopMar StopLimi OneCanc OneCanc TrailingS TrailingS
er\ ket t elsOther elsOther topMark topLimit
Order Market Limit et

model

account_ X X X X X X X X
number

security_ X X X X X X X X
with_stoc

kexchang

e

order_typ x X X X X X X X
e

amount X X X X X X X X

order su o,1) o,1)
pplement

validity_d x X X X X X X X
ate

limit X X X
stop X X X X X X
stop_limit X X

trailing_d X X
istance

trailing n X X
otation

trailing_li X, 2)
mit_toler

ance

39

Paramet Market Limit StopMar StopLimi OneCanc OneCanc TrailingS TrailingS
er\ ket t elsOther elsOther topMark topLimit
Order Market Limit et

model

dripping_ o, 3) o, 3)
quantity

position_i o, 4) 0, 4) 0, 4) 0, 4) 0,4) 0,4) 0,4) 0,4)
d

validatio o0,5) 0,5) 0,5) 0,5) 0,5) 0,5) 0,5) 0,5)
n

cash_quot o, 6) 0, 6) 0, 6) 0, 6) 0, 6) 0, 6) 0, 6) 0, 6)
ation

risk_class o 0 0 0 0 0 0 0
_override

target_ma o 0 0 0 0 0 0 o}
rket_over
ride

tax_nontr o 0 0 0 0 0 0 0
ansparen

t_overrid

e

accept_ad o 0 0 0 0 0 0 0
ditional_f
ees

closed_re o 0 0 0 0 0 0 0
alestate f

ond_over

ride

@ Stock exchange: ETR only, values: IMMIDIATE_OR_CANCEL, FILL_OR_KILL, ICEBERG

@ Stock exchange: TRG only

® Stock exchange: ETR only, when order_supplement equals ICEBERG, pro only

@ Position id is optional field by the order action with existing depot position

® Default value: WITHOUT_VALIDATION. Order is routed directly to market

® Cash quotation:

Stock NOTHING KASSA AUCTION OPENING INTRADAY CLOSING
exchange

ETR X X X X X X
German X X

Other X

The full list of the order service functions can be checked in the next list. Some functionality
avialable only in pro version of the ActiveTrader.

40

Important

To execute new order is need at least to fill all madatory fields. See x values in the
each column for selected order model.

Stream orders

To get information about current orders ist need to subscribe for this information with help of
StreamOrders function. All order changes will come asynchronically as a list of the all avialable
orders.

Useful

Q An amount of the updated orders can be configured in the ActiveTrader general
settings.

Example C#: StreamOrders()

private readonly OrderService.OrderServiceClient orderServiceClient;

public CancellationTokenSource StreamOrders(TradingAccount tradingAccount)

{

TradingAccountRequest request = new TradingAccountRequest() @

{

AccessToken = _accessToken,
TradingAccount = tradingAccount

};
OrdersStreamer ordersStreamer = new OrdersStreamer(orderServiceClient); @
CancellationTokenSource tokenSource = new CancellationTokenSource(); ®

var task =ordersStreamer.Stream(@
request,
reply => Console.WriteLine("Process orders: " + reply), ®
tokenSource.Token);

return tokenSource; ®

@ Create request

@ Create streamer

® Create cancel token source

@ Start processing in background
® Process tick

® Return cancel token source

41

Example C#: OrdersStreamer

class OrdersStreamer : @
StreamObserver<OrderService.OrderServiceClient, TradingAccountRequest, Orders>

{
public OrdersStreamer(OrderService.OrderServiceClient client) : @
base(client, (request, token) => client.StreamOrders(request, null, null,
token))
{1}
}

@ Define class with client, request and reply types

@ Request data from server

Important

In the pro version of the ActiveTrader order number value can be changed (for

' example after activation / deactivation of the order). To match saved in the client
application orders with the orders from update is need to use unique_id field from
the Order object.

Update orders

Sometime is necessary to update orders manually. To initiate this update you have to call
UpdateOrders function. This function takes trading account as input parameter and doesn’t deliver
any results. It’s also don’t wait for the results. All changes are delivered directly to the orders
listeners in the background.

Warning

A This function used for the compatibility proposals and can be removed in the
future versions of the TAPIL

Get securities quotes

Before to execute order add action is often necessary to get actual quote information for the
selected security. This information can be subscribed in the security service or requested in the
order service. It’s not a matter where this information is requested for the normal order add action,
but it’s important in case if you want to process accept quote on the short term market. In this case
is necessary to use get quote function from order service.

o Important

Please call get quote function before to call of the accept order action.

42

Example C#: RequestQuotesDirect()
private readonly OrderService.OrderServiceClient orderServiceClient;

public void RequestQuotesDirect(string code, SecurityCodeType codeType)
{
QuoteRequest request = new QuoteRequest() M
{
AccessToken = _accessToken,
OrderType = OrderType.Buy,
SecurityCode = new SecurityCode()
{
Code = code,
CodeType = codeType
},
Amount = 10,
StockExchanges =
{
GetStockExchange("BAA"), @
GetStockExchange("0TC"),
GetStockExchange("TRG")

i
QuoteReply quoteReply = orderServiceClient.GetQuote(request); ®

if (quoteReply.Error == null) @

{
foreach (var quoteEntry in quoteReply.PriceEntries) ®
{
if (quoteEntry.Error == null) ®
{
Console.Write("Quote: " + quoteEntry);
+
else
{
Console.Write("Error: "+quoteEntry.Error);
}
}
}

@ Prepare request

@ Set requested stock exchanges
® Process request

@ Check requests errors

® Iterate results

43

® Check results errors

Other difference between quotes from the security service and order service is that it’s depended
from user rights. An order service can have limited amount of the requests for the long terms
stockexchanges. You can request data more then from one stock exchange for one security at once.
In this case function returns all results for all requested stock exchanges after processing of all data
for each stock exchange. That can follow to the timeouts by the functions calls. You can use
asychronical requests if to don’t have timeouts is important. It’s also possible to process many get
quote requests in parallel and pack to each request only one stockexchange. The results from the
requests can be processed in background.

Example C#: RequestQuotesAsynchronically()
private readonly OrderService.OrderServiceClient orderServiceClient;
public QuoteReply RequestQuotesAsynchronically(string code, SecurityCodeType codeType)

{
SecurityCode securityCode = new SecurityCode() @

{
Code = code,
CodeType = codeType
1
StockExchange[] stockExchanges = @
{
GetStockExchange("BAA"),
GetStockExchange("0TC"),
GetStockExchange("TRG")
b

CountdownEvent countdown = new CountdownEvent(3); ®
object resultsLock = new object();
QuoteReply reply = null;

foreach (var stockExchange in stockExchanges) @

{
QuoteRequest request = new QuoteRequest() ®
{
AccessToken = _accessToken,
OrderType = OrderType.Buy,
Amount = 10,
SecurityCode = securityCode,
StockExchanges = {stockExchange}
I

var taskAwaiter = orderServiceClient.GetQuoteAsync(request).GetAwaiter(); ®
taskAwaiter.OnCompleted(() => @

{
QuoteReply currentReply = taskAwaiter.GetResult(); ®

lock (resultslLock)

{
if (currentReply != null &&

44

currentReply.Error == null &&
currentReply.PriceEntries.Count>0)

{
// Find lowest buy price
if (reply == null ||
currentReply.PriceEntries[0].BuyPrice < reply.PriceEntries[0]
.BuyPrice)
{
reply = currentReply;
}
}
}
countdown.Signal();
b
}

countdown.WaitHandle.WaitOne(); ©
return reply;

@ Prepare security code

@ Prepare stock exchanges

® Prepare count down counter (to process 3 requests)

@ TIterate all stock exchanges

® Create request

® Start request in background and get awaiter to listen for the results
@ Create continuation to process results

Get result, select one with lowest buy price, send signal to the countdown to reduce amount of
the active requests

© Listen for the countdown.

Main execution thread starts requests to process them in the background and wait for the results.
It’s possible to modify the code to provide fully background processing.

Prepare b Start request —
Start request
—p»
Start request
1 Y
» Wait for results D Process results

45

Accept quote

To place an order on the short term market is necessary to request quote first. If QuoteEntry will
contain filled quote_reference field then it’s possible to place order with help of accept quote
function to the short term market. Otherwise accept quote is not possible. By the calling of the
accept quote function you have to use same parameters as you used for the get quote. Otherwise
the request parameters will be denied and the action will be finished with an error.

Example C#: AcceptQuote()
private readonly OrderService.OrderServiceClient orderServiceClient;

public OrderReply AcceptQuote(string code, SecurityCodeType codeType)
{

var stockExchange = GetStockExchange("0TC");

var securityCode = new SecurityCode()

{
Code = code,
CodeType = codeType
b
QuoteRequest request = new QuoteRequest() M
{
AccessToken = _accessToken,
OrderType = OrderType.Buy,
SecurityCode = securityCode,
Amount = 10,
StockExchanges =
{
stockExchange,
}
i

QuoteReply quoteReply = orderServiceClient.GetQuote(request); @
if (quoteReply != null &&
quoteReply.Error != null)
{
var quoteReplyPriceEntry = quoteReply.PriceEntries[0];
if (quoteReplyPriceEntry.Error != null && ®
quoteReplyPriceEntry.QuoteReference != null)
{
AcceptQuoteRequest acceptQuoteRequest = new AcceptQuoteRequest() @
{
AccessToken = _accessToken,
AccountNumber = "123456789",
OrderType = OrderType.Buy,
SecurityWithStockexchange = new SecurityWithStockExchange()

{
SecurityCode = securityCode,
StockExchange = stockExchange
}
Amount = 10,

46

Validation = Validation.ValidateOnly,

Limit = quoteReplyPriceEntry.BuyPrice, ®

QuoteReference = quoteReplyPriceEntry.QuoteReference ®
}i

return orderServiceClient.AcceptQuote(acceptQuoteRequest); @

}

return null;

@ Prepare get quote request

@ Call get quote function

® Check quote result (it should be only one quote) and we have quote reference
@ Create accept quote request

® Set limit with the data from quote reply

® Set quote reference from quote reply

@ Process accept quote request

Warning

By default validation parameter equals WITHOUT_VALIDATION and accept
quote request will directly routed to the market. If you want only check a validity

A of the request, then you need to set validation parameter to VALIDATE_ONLY. An
order will validated by the backend system, but will not be routed to the market.
It’s very useful for the test goals. Order number in the reply in this case is
undefined.

Add order

To put new order to the long term marken is necessary to use AddOrder function. This function
takes AddOrderRequest as an input parameter and returns OrderReply as a result. Typically this
function is called with blocked stub, but it can also used with non blocking stub if more then one
order need to executed in parallel.

The possible parameter combinations can be fetched from security information reply. There are
defined order possibilities for defined markets.

Pro version of the ActiveTrader allowes to use additional flag inactive. If this flag set to the value
true then order is placed to the system, but isn’t routed to the market. With the help of
ActivateOrder function an order can be activated.

ﬂ Important
It’s important to fill only parameters that need for the order execution

47

Example C#: AddOrder()

private readonly OrderService.OrderServiceClient orderServiceClient;

public Date GetTodayDate()

{

}

DateTime localDate = DateTime.Now;
return new Date()

{
Day = localDate.Day,
Month = localDate.Month,
Year = localDate.Year

Iy

public OrderReply AddOrder(TradingAccount tradingAccount)

{

if (tradingAccount != null)
{
AddOrderRequest request = new AddOrderRequest()
{

AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
SecurityWithStockexchange = new SecurityWithStockExchange() @
{

SecurityCode = new SecurityCode()

{

Code = "710000",
CodeType = SecurityCodeType.Wkn

Iy

StockExchange = GetStockExchange("0TC")
s
Validation
Amount = 1,
OrderModel
Limit = 1,
OrderType = OrderType.Buy, ®
CashQuotation = CashQuotation.Kassa,
ValidityDate = GetTodayDate() ®

Validation.ValidateOnly, ®

OrderModel.Limit, @

b
return orderServiceClient.AddOrder(request); @
}

return null;

@ Set trading account

@ Set security with stock exchange

® Set validation flag

48

@ Set order model

® Set order type

® Set validity date

@ Process order add

A

Warning

By default validation parameter equals WITHOUT_VALIDATION and accept
quote request will directly routed to the market. If you want only check a validity
of the request, then you need to set validation parameter to VALIDATE_ONLY. An
order will validated by the backend system, but will not be routed to the market.
It’s very useful for the test goals. Order number in the reply in this case is
undefined.

Change order

To change order is necessary to have order number of existing order and an account with this
order linked to. The order can be changed if the status of the orders allowes that and new state is
allowed by the markt.

v

Useful

Sometimes can happens that order is changed / executed on the market, but status
information is not delivered into the application.

49

Example C#: ChangeOrder()
private readonly OrderService.OrderServiceClient orderServiceClient;
public OrderReply ChangeOrder(Order order, TradingAccount tradingAccount)

{
if (order != null && tradingAccount != null)

{
string orderNumber = order.OrderNumber;
if (orderNumber != null && 'orderNumber.Equals(""))
{
ChangeOrderRequest request = new ChangeOrderRequest() @
{
AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
OrderNumber = orderNumber, ®
Validation = Validation.ValidateOnly, @
OrderModel = OrderModel.Limit, ®
Limit = 2
b
return orderServiceClient.ChangeOrder(request); ®
}
}

return null;

@ Create request

@ Set account number
® Set order number
@ Set validation flag
® Set new limit

® Process change order

Warning

By default validation parameter equals WITHOUT VALIDATION and accept

A quote request will directly routed to the market. If you want only check a validity
of the request, then you need to set validation parameter to VALIDATE_ONLY. An
order will validated by the backend system, but will not be routed to the market.
It’s very useful for the test goals.

Cancel order

To cancel order is necessary to have order number of existing order and an account with this order
linked in. The order can be canceled if the status of the orders allowes that.

50

Example C#: CancelOrder()
private readonly OrderService.OrderServiceClient orderServiceClient;
public OrderReply CancelOrder(Order order, TradingAccount tradingAccount)

{
if (order != null && tradingAccount != null)

{
string orderNumber = order.OrderNumber;
if (orderNumber != null && 'orderNumber.Equals(""))
{
CancelOrderRequest request = new CancelOrderRequest() @
{
AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
OrderNumber = orderNumber, ®
Validation = Validation.ValidateOnly, @
b
return orderServiceClient.CancelOrder(request); ®
}
}

return null;

@ Create request

@ Set account number
® Set order number
@ Set validation flag

® Process change order

Warning

By default validation parameter equals WITHOUT VALIDATION and accept

A quote request will directly routed to the market. If you want only check a validity
of the request, then you need to set validation parameter to VALIDATE_ONLY. An
order will validated by the backend system, but will not be routed to the market.
It’s very useful for the test goals.

Activate order

Activate order function used to activate inactive order and route an order to the market. This
function available only in pro version of the ActiveTrader.

51

Example C#: ActivateOrder()
private readonly OrderService.OrderServiceClient orderServiceClient;
public OrderReply ActivateOrder(Order order, TradingAccount tradingAccount)

{
if (order != null && tradingAccount != null)

{
string orderNumber = order.OrderNumber;
if (orderNumber != null && 'orderNumber.Equals(""))
{
ActivateOrderRequest request = new ActivateOrderRequest() @D
{
AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
OrderNumber = orderNumber, ®
Validation = Validation.ValidateOnly, @
b
return orderServiceClient.ActivateOrder(request); ®
}
}

return null;

@ Create request

@ Set account number
® Set order number
@ Set validation flag

® Process change order

Deactivate order

Deactivate order function used to deactivate active order and remove an order from the market.
This function available only in pro version of the ActiveTrader.

52

Example C#: DeactivateOrder()
private readonly OrderService.OrderServiceClient orderServiceClient;
public OrderReply DeactivateOrder(Order order, TradingAccount tradingAccount)

{
if (order != null && tradingAccount != null)

{
string orderNumber = order.OrderNumber;
if (orderNumber != null && 'orderNumber.Equals(""))
{
DeactivateOrderRequest request = new DeactivateOrderRequest() @
{
AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
OrderNumber = orderNumber, ®
Validation = Validation.ValidateOnly, @
b
return orderServiceClient.DeactivateOrder(request); ®
}
}

return null;

@ Create request

@ Set account number
® Set order number
@ Set validation flag

® Process change order

Order costs

BaFin Rules

The law allowes to execute orders only after requesting of the order costs with a possibility to
decline order in the case if order costs are not accepted. That follows to request order cost before
order execution. The order execution without requesting of the order costs is not allowed.

Processing of the order costs

You can request an information about estimated order costs in AddOrderRequest and

AcceptQuoteRequest.
Warning
A OrderCost contains only estimated values. The real values are depended from

real execution quotes, time of the execution and other parameters.

53

To request cost information is need to execute orders requests with Validation wvalues
VALIDATE_WITH_TOTAL_COSTS, TOTAL_COST_ONLY or VALIDATE WITH_DETAIL_COSTS. In
first and second cases only total or aggregated costs are calculated. In second case detail
information about costs is delivered. In all cases only validation of the request is happened, without
real execution. To execute order you have to repeat same request with Validation
WITHOUT_VALIDATION type.

Important

0 During prepartion phase TOTAL_COST_ONLY validation type can be replaced
with VALIDATE_WITH_TOTAL_COSTS type.

All order costs can be checked in the online archive.

User application ActiveTrader

Request order costs

» Put cost to the online archive

Cache
Order costs
d
-
Wait/Analyse

Process order with
same parameters

p Execute order

Error handling

If no costs are avialable or costs information is outdated then by the order execution will be return
ORD_COSTS_ABSENT_ERR error. In such cases is necessary to repeat order costs request and order
execution request.

54

User application ActiveTrader

Process order request
4
ORD_COSTS_ABSENT_ERR
4
Request order costs
p Put cost to the online archive
Cache
Order costs
4
Process order request
» Execute order
b
Useful

To speed up order execution and save time by the order placement it’s possible to
prepare and validate order with VALIDATE WITH_TOTAL_COSTS or
TOTAL_COST_ONLY flags and some time later execute the same order with
WITHOUT_VALIDATION flag. The host system will recognize parameters of the
order and will forward order directly to the market. Otherwise to fullfil all BaFin
requirements host system will request order costs before the order execution. In
the each case the information about order costs will be placed into online archive
before the order execution.

Warning

This request doesn’t send order to the market, but validates only. As the result no
real order is placed into the system.

55

Example C#: GetOrderCosts()
private readonly OrderService.OrderServiceClient orderServiceClient;

OrderReply GetOrderCosts(TradingAccount tradingAccount)
{
AddOrderRequest request = new AddOrderRequest()
{
AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber, @
SecurityWithStockexchange = new SecurityWithStockExchange() @
{
SecurityCode = new SecurityCode()
{
Code = "710000",
CodeType = SecurityCodeType.Wkn
s
StockExchange = GetStockExchange("0TC")
I
Validation = Validation.ValidateWithTotalCosts, ®
// Validation = Validation.ValidateWithDetailCosts,
Amount = 1,
OrderModel = OrderModel.Limit, @
Limit = 1,
OrderType = OrderType.Buy, ®
CashQuotation = CashQuotation.Kassa,
ValidityDate = GetTodayDate() ®
s
OrderReply orderReply = orderServiceClient.AddOrder(request); @

if (orderReply.Error != null)

{
OrderCosts orderCosts = orderReply.OrderCosts; ®
double estimatedCosts = orderCosts.EstimatedTotalCosts;
foreach (var categorieCost in orderCosts.CategorieCosts) ©
{
double totalSubAbsolute = categorieCost.TotalSumAbsolute;
/] ...
}
}

Console.WriteLine("Costs reply:"+orderReply);
return orderReply;

@ Set account number
@ Set security with stock exchange
® Set validation (It should be ValidateWithTotalCosts or ValidateWithDetailCosts)

@ Set order model

56

® Set order type

® Set validity date

@ Process request

Extract order costs

© Check costs by the categorie

Early request of the order costs

Useful

It’s possible to prepare an order for the execution and keep an infomation about
order costs for the future execution without additional checks. This information
will be cached in the application and reused by the real order execution. No
additional steps will be performed. All data about order costs will be (additionally)
avialible in the online archive.

It’s important to understand that sometime costs information can be absolette. In
this case an order execution will be failed with the error
ORD_COSTS_NOT_REQUESTED. In such cases is need to repeat order costs
request and order execution request.

Example C#: AddOrderWithCostsRequest()

private readonly OrderService.OrderServiceClient orderServiceClient;

public OrderReply AddOrderWithCostsRequest(TradingAccount tradingAccount)

{

if (tradingAccount != null)

{

AddOrderRequest costsRequest = new AddOrderRequest() @

{

AccessToken = _accessToken,

AccountNumber = tradingAccount.AccountNumber,
SecurityWithStockexchange = new SecurityWithStockExchange() @
{

SecurityCode = new SecurityCode()

{
Code = "710000",
CodeType = SecurityCodeType.Wkn
Iy,
StockExchange = GetStockExchange("0TC")
b
Validation = Validation.TotalCostsOnly, ®
Amount = 1,
OrderModel = OrderModel.Limit,
Limit = 1,

OrderType = OrderType.Buy, @
CashQuotation = CashQuotation.Kassa,
ValidityDate = GetTodayDate()

57

};

OrderReply costsReply = orderServiceClient.AddOrder(costsRequest); ®
if (costsReply.Error != null) ®
{

Console.WriteLine(costsReply.Error);
return costsReply;

}

AddOrderRequest request = new AddOrderRequest() @
{

AccessToken = _accessToken,
AccountNumber = tradingAccount.AccountNumber,
SecurityWithStockexchange = new SecurityWithStockExchange()

{

SecurityCode = new SecurityCode()

{
Code = "710000",

CodeType = SecurityCodeType.Wkn

+
StockExchange = GetStockExchange("0TC")

s
Validation = Validation.WithoutValidation, ®
Amount = 1,
OrderModel = OrderModel.Limit,
Limit = 1,
OrderType = OrderType.Buy,
CashQuotation = CashQuotation.Kassa,
ValidityDate = GetTodayDate()
s
return orderServiceClient.AddOrder (request); ©
}

return null;

@ Prepare costs request

@ Prepare stock exchange

® Use total costs only

@ Set order parameters

® Process costs calulation request

® Check errors

@ Prepare execution request

Prepare real order add request (Warning real execution)

@ Process order execution

Example C#: AcceptQuoteWithCostsRequest()

58

private readonly OrderService.OrderServiceClient orderService(Client;

public OrderReply AcceptQuoteWithCostsRequest(string code, SecurityCodeType codeType)

{

var stockExchange = GetStockExchange("0TC");
var securityCode = new SecurityCode()
{

Code = code,

CodeType = codeType
}i
AcceptQuoteRequest acceptQuoteCostsRequest = new AcceptQuoteRequest() @
{

AccessToken = _accessToken,

AccountNumber = "123456789",

OrderType = OrderType.Buy,

SecurityWithStockexchange = new SecurityWithStockExchange()

{

SecurityCode = securityCode,
StockExchange = stockExchange

I

Validation = Validation.TotalCostsOnly, @

Amount = 10, ®
b
OrderReply costsReply = orderServiceClient.AcceptQuote(acceptQuoteCostsRequest);

if (costsReply.Error != null) ®

{
Console.WritelLine(costsReply.Error);
return costsReply;

}

// Sometimes later
QuoteRequest request = new QuoteRequest() ®

{
AccessToken = _accessToken,
OrderType = OrderType.Buy,
SecurityCode = securityCode,
Amount = 10,
StockExchanges =
{
stockExchange,
}
b

QuoteReply quoteReply = orderServiceClient.GetQuote(request); @
if (quoteReply != null &&
quoteReply.Error != null)

{
var quoteReplyPriceEntry = quoteReply.PriceEntries[0];

59

if (quoteReplyPriceEntry.Error != null &&
quoteReplyPriceEntry.QuoteReference != null)

{
AcceptQuoteRequest acceptQuoteRequest = new AcceptQuoteRequest() ®
{
AccessToken = _accessToken,
AccountNumber = "123456789",
OrderType = OrderType.Buy,
SecurityWithStockexchange = new SecurityWithStockExchange()
{
SecurityCode = securityCode,
StockExchange = stockExchange
b
Amount = 10,
Validation = Validation.WithoutValidation, @
Limit = quoteReplyPriceEntry.BuyPrice, @
QuoteReference = quoteReplyPriceEntry.QuoteReference @
Y
return orderServiceClient.AcceptQuote(acceptQuoteRequest); @
}

}

return null;

@ Prepare costs request

@ Set validation only with total costs

® Limit is optional, Quote reference can be empty
@ Process costs calulation request

® Check errors

® Prepare quote request

@ Process quote request

Prepare accept quote request

©@ Set validation (Warning real execution)
Set order parameters

@ Set quote reference

@ Process order execution

Errors

Error code Target
ACC_NOT_TRADING_ERR Ordering
ACC_NOT_VALID_ERR Ordering

60

Description

Process order with not trading
account

Process order with invalid
account

Error code Target Description

ORD_ACTIVE_ERR Ordering Inactivate order in non pro
version

ORD _AMOUNT ERR Ordering Orders amount is not changable
for selected order

ORD_DRIPPING_QUANTITY_ERR Ordering Dripping quantity error

ORD_COSTS_ERR Ordering Order costs information
unavialable

ORD _COSTS_ABSENT ERR Ordering Order costs information is not
cached.

ORD_LIMIT_ERR Ordering Limit field is invalid

ORD _MODEL_ERR Ordering Order model is wrong

ORD_NOT_CANCELABLE_ERR Ordering Order is not cancelable

ORD _NOT KNOWN_ERR Ordering Order is not known by the
system

ORD_STOP_ERR Ordering Order stop is not changable

ORD_STOP_LIMIT_ERR Ordering Stop limit is not changable

ORD_TRALING_DISTANCE_ERR Ordering Traling distance is not
changable

ORD_TRALING_LIMIT_TOLERA Ordering Traling limit tolerance is not

NCE_ERR changable

ORD_VALIDITY_DATE_ERR Ordering Validity date is not changable

ORD_WRONG_PRICE_TICKET_E Ordering Price ticket is not correct for

RR this accept quote

ORD_QUOTE_ERR Ordering Quote is not valid

ORD _VALIDATION_ERR Ordering Selected validation can not be
use for this request

ORD_COSTS_NOT_REQUESTED Ordering Costs are not requested before
order or costs information is
old

STK_NOT FOUND_ERR Stocks Stock exchange is unknown

INTERNAL_ERR System Internal engine error

SYSTEM_ERR System GRPC error

UNSUPPORTED_OPERATION_ER System Operation is not supported

R

Objects and types description

AcceptQuoteRequest

Accept quote request represents information about one order that should be placed on the short

61

term market

Field Type
access_token string
account_number string
security_with_stoc SecurityWithStock
kexchange Exchange
order_type OrderType
amount double

limit double
quote_reference string
validation Validation
risk_class_overrid bool

e

target_market_ove bool

rride

tax_nontranspare bool
nt_override

accept_additional_ bool

fees
AccessTokenRequest

Description
Access token
Trading account number

Security code with stock exchange

Order type. It should be relevant to the requested
GetQuoteRequest

Amount, It should be relevant to the requested
GetQuoteRequest

Limit
Quote reference from GetQuoteRequest

Validation flag. If value is WITHOUT_VALIDATION then
backend system sends order actions directly to the market.
If value is VALIDATE_ONLY then backend system doesn’t
send order actions to the market, but validate order
parameters.

If value is VALIDATE_WITH_TOTAL_COSTS then order will
validated by backend system and request total costs for
the order.

If value is VALIDATE_WITH_DETAIL_COSTS then order will
validated by backend system and request detail costs for
the order.

Risk class override flag. If true then allowes override user
risk class

Target market override flag. If true then allowes override
target market

Tax non trasparent override flag. If true then allowes
override tax intransparesity

Accept additinal fees flag. If true then allowes accept non
transparent fees

Access token request contains an access token data

Field

access_token

Type

string

Description

Access token

ActivateOrderRequest

Activate order request represents information for activation of one inactive order pro only

62

Field
access_token
account_number
order_ number

validation

Type

string
string
string

Validation

AggregatedCosts

Description

Access token

Trading account number

Order number for that this changes should be accepted

Validation flag. This request allowes only
WITHOUT_VALIDATION and VALIDATE_ONLY values.
If value is WITHOUT_VALIDATION then backend system
sends order actions directly to the market.

If value is VALIDATE_ONLY then backend system doesn’t
send order actions to the market, but validate order
parameters.

Aggregated costs contain an information about estimated costs for the selected order

Field
in_costs_absolute
in_costs_relative
in_costs_currency
out_costs_absolute
out_costs_relative

out_costs_currenc
y

instrument_costs_
absolute

instrument_costs_
relative

instrument_costs_
currency

service_costs_abso
lute

service_costs_relat
ive
service_costs_curr
ency

subsidy_costs_abs
olute

subsidy_costs_rela
tive

subsidy_costs_curr
ency

Type
double
double
string
double
double

string

double

double

string

double

double

string

double

double

string

Description

In costs for the order
Percentage part of the in costs
Currency for the in costs

Out costs for the order
Percentage part of the out costs

Currency for the out costs

Instrument costs for the order

Percentage part of the instrument costs

Currency for the instrument costs

Service costs for the order

Percentage part of the service costs

Currency for the servcie costs

Subsidy costs for the order

Percentage part of the subsidy costs

Currency for the subsidy costs

63

Field Type Description

foreign_currency_ double Foreign currency costs for the order
costs_absolute

foreign_currency_ double Percentage part of the foreign currency costs
costs_relative

foreign_currency_ string Currency for the foreign currency costs
costs_currency

performance_imp double Performance impact for the order
act_absolute

performance_imp double Percentage part of the performance impact
act_relative

performance_imp string Currency for the performance impact
act_currency

expected_amount double Expected amount estimated for the order
expected_amount_ string Currency for the expected amount

currency

AddOrderRequest

Add order request represents order data for the long term markets

Field Type Description

access_token string Access token

account_number string Trading account number which used for the execution

security_with_stoc SecurityWithStock Security code with stock exchange

kexchange Exchange

order_type OrderType Order type

amount double Amount of the securities

order_model OrderModel Order model

order_supplement OrderSupplement Order supplement

cash_quotation CashQuotation Cach quotation

validity_date Date Order validity date

limit double Limit value

stop double Stop value. This value can be used only together with
StopMarket, StopLimit and OneCancelOter order models.

stop_limit double Stop limit used in the StopLimit and OneCancelOther
order models

trailing_distance double Traling distance in traling notation units or empty value

trailing_notation TrailingNotation Trailing notation for the trailing orders

trailing_limit_toler double

ance

64

Trailing limit tolerance for the trailing orders

Field Type
dripping_quantity double

position_id string

validation Validation

risk_class_overrid bool
e

target_market_ove bool
rride

tax_nontranspare bool
nt_override

accept_additional_ bool
fees

closed_realestate_f bool
ond_override

Description
Dripping quantity pro only

Position id of the depot position. It used only for sale
certainly securities from depot

Validation flag. If value is WITHOUT_VALIDATION then
backend system sends order actions directly to the market.
If value is VALIDATE_ONLY then backend system doesn’t
send order actions to the market, but validate order
parameters.

If value is VALIDATE_WITH_TOTAL_COSTS then order will
validated by backend system and request total costs for
the order.

If value is VALIDATE_WITH_DETAIL_COSTS then order will
validated by backend system and request detail costs for
the order.

Risk class override flag. If true then allowes override user
risk class

Target market override flag. If true then allowes override
target market

Tax non trasparent override flag. If true then allowes
override tax intransparesity

Accept additinal fees flag. If true then allowes accept non
transparent fees

Closed realestate fond override. If true then allowes sell
fonds over fds

Inactive order flag, pro only. If true then order market as
inactive and don’t routed to the marker. To activate order
please use ActivateOrder function

Cancel order request represents canceling information for one order on the market or one inactive

inactive bool
CancelOrderRequest
order

Field Type
access_token string

account_number string
order_ number string

validation Validation

Description

Access token

Trading account number

Order number for that this changes should be accepted

Validation flag. This request allowes only
WITHOUT_VALIDATION value.

If value is WITHOUT_VALIDATION then backend system
sends order actions directly to the market.

Otherwise request will fail.

65

CashQuotation

Cash quotation is additional parameter of the order

Field
NOTHING
KASSA
AUCTION
OPENING
INTRADAY
CLOSING

Description

Quotation is not defined

Kassa quotation

Auction quotation

Opening quotation

Intraday quotation

Close quotation

CategoryCost

Represents one category cost.

Field
category_id
category_label

total_sum_absolut

e

total_sum_relative

currency

detail costs

ChangeOrderRequest

Type
string
string

double

double

string

List of DetailCost

Description
Category id
Human redable category label

Total absolute sum of the children values

Total relative sum of the children values
Currency for absolute sum

List of child values or detailed information.

Change order request contains parameters for the order change. Be careful: not all combinations

are possible.

Field

access_token

account_number

order_ number
limit

stop

stop_limit
amount
validity_date

order_model

66

Type

string

string

string
double
double
double
double

Date
OrderModel

Description

Access token

Trading account number

Order number for that this changes should be accepted
New limit, shouldn’t filled for market order

New stop value

New stop limit value

New amount

New validity date

New order model

Field Type Description
order_supplement OrderSupplement New order supplement
dripping_quantity double Dripping quantity pro only

validation Validation Validation flag. This request allowes only
WITHOUT_VALIDATION and VALIDATE_ONLY values.
If value is WITHOUT_VALIDATION then backend system
sends order actions directly to the market.
If value is VALIDATE_ONLY then backend system doesn’t
send order actions to the market, but validate order

parameters.
trailing_distance double New trailing distance
trailing_limit_toler double New traling limit tolerance
ance
CurrencyRateReply
Returns currency rate
Field Type Description
currency_from string Source currency
currency_to string Target currency
currency_rate double Currency rate
error Error Error information if occuirs

CurrencyRateRequest

CurrencyRateRequest used for the determination of the currency rate from one currency rate to
second currency. Results depends from user market data aboniment and can be realtime or
delayed.

Field Type Description
access_token string Access token
currency_from string Source currency
currency_to string Target currency
Date

Represents a whole calendar date, e.g. date of birth. The time of day and time zone are either
specified elsewhere or are not significant. The date is relative to the Proleptic Gregorian Calendar.
The day may be 0 to represent a year and month where the day is not significant, e.g. credit card
expiration date. The year may be 0 to represent a month and day independent of year, e.g.
anniversary date. Related types are [google.type.TimeOfDay][google.type.TimeOfDay] and
google.protobuf.Timestamp.

67

Field Type Description

year int32 Year of date. Must be from 1 to 9999, or 0 if specifying a
date without a year.

month int32 Month of year. Must be from 1 to 12.

day int32 Day of month. Must be from 1 to 31 and valid for the year

and month, or 0 if specifying a year/month where the day
is not significant.

DeactivateOrderRequest

Deactivate order request represents information for deactivation of one active order pro only

Field Type Description

access_token string Access token

account_number string Trading account number

order_number string Order number for that this changes should be accepted
validation Validation Validation flag. This request allowes only

WITHOUT_VALIDATION and VALIDATE_ONLY values. If
value is WITHOUT_VALIDATION then backend system
sends order actions directly to the market. If value is
VALIDATE_ONLY then backend system doesn’t send order
actions to the market, but validate order parameters

DepotEntries

Field Type Description

account TradingAccount Trading account

entries List of DepotEntry Depot entries list

error Error Error information if occuirs

DepotEntry

Depot entry contains information about one security in the depot. This entry combines data from
one or more depot positions

Field Type Description

security_code SecurityCode Security code

positions List of List of linked depot positions. This list contains at least one
DepotPosition element

effective_amount double Effective amount

scheduled_amount double Scheduled amount

total_amount double Total amount of the securities

68

Field Type

sell_possible bool
unit_note UnitNote
blocked bool

purchase_quotatio double
n

purchase_currenc string
y

purchase_currenc double
y_rate

open_sales double

DepotPosition

Description

True if sell possible for this entry or false otherwise. This
value can be true only if all child positions have
sell_possible = true

Unit note
True if entry is blocked or false otherwise

Purchase quotation or NaN if not defined

Purchase currency or empty value if not defined

Purchase currency rate or NaN if not defined

Open sales

Depot posiotion contains information about one position in the depot

Field Type
amount double
position_id string
sell_possible bool
unit_note UnitNote
blocked bool

purchase_quotatio double
n

purchase_currenc string
y

purchase_currenc double
y_rate

DetailCost

Description

Ammount of the securities

Position identification

True if sell of the position is possible or false otherwise
Unit note

True if entry is blocked or false otherwise

Purchase quotation or NaN if not defined. Currently this
field ALWAYS undefined, reserved for future use

Purchase currency or empty value if not defined

Purchase currency rate or NaN if not defined

Detail cost contains one entry for the selected category

Field Type
detail id string
detail label string
value_absolute double
value_relative double
currency string

Description

Detail id

Human redable detail label
Absolute value for this entry
Relative value for this entry

Currency for this entry

69

Field Type Description
detail_type string Specific entry type

Empty
Empty represents absent parameter or result

Field Type Description

Error

Error object

Field Type Description
code string Error code
message string Error message
LimitToken

Limit token represents a possibility to trade on the short term markets (AcceptQuote) and long term
markets (AddOrder)

Field Description

LIMIT_AND_QUOTE AcceptQuote and AddOrder possible
QUOTE_ONLY AcceptQuote only possible
LIMIT_ONLY AddOrder only possible

LoginReply

Login reply provides information that need for the access to the TAPI

Field Type Description

access_token string Access token is used in each request by the access to the
TAPL

error Error Error information if occuirs

LoginRequest

Login request provides data for initial access to the TAPI

70

Field

secret

Type

string

LogoutReply

Field Type
error Error
LogoutRequest
Field Type
access_token string

Order

Order represent one order object

Field

security_with_stoc
kexchange

order_type

order number
amount
order_model
order_supplement
cash_quotation
executed_amount
order_status
status_timestamp
validity_date

limit

stop

stop_limit

trailing_distance

Type
SecurityWithStock
Exchange

OrderType
string

double
OrderModel
OrderSupplement
CashQuotation
double
OrderStatus
Timestamp
Date

double

double

double

double

Description

Secret is user defined access string. It’s not possible to
restore this secret directly. See double MD5 hash logic +
salt

Description

Error information if occuirs

Description

Access token to invalidate.

Description

Security with stock echange

Order type

Order number

Amount of the securities

Order model

Order supplement

Cache quotation

Executed amount

Order status

Date and time of the order status
Validity date of the order

Limit value. Used as the order limit for all Limit order
model with exception of the StopLimit order model. For
this order model please use stop limit field.

Stop value. This value can be used only together with
StopMarket, StopLimit and OneCancelOter order models.

Stop limit value Can be used only tigether with the
StopLimit order model. The meaning of the value is limit
of the order after stop.

Traling distance in traling notation units or empty value

71

Field Type

trailing_notation TrailingNotation

trailing_limit_toler double
ance

dripping_quantity double

trading_partner_n string

ame
execution_quote double
unique_id string

OrderBookEntry

Description
Trailing notation for the trailing orders

Trailing limit tolerance for the trailing orders

Dripping quantity pro only

Trading partner name

Execution quote for the executed amount

Unique id of the order. Used for the order matching. In the
pro version of the ActiveTrader order_number can be
changed after activation / deactivation. All order activities
need actual or delivered form the system order_number.
Typical scenario is to map and update unique id to the
order number delivered from the API.

Orderbook entry contains data about one level of the order book. This is bid price, ask price, bid
volume, ask volume. Entries with lower index have lower ask and higer bid prices.

Field Type
bid_price double
ask_price double
bid_volume double
ask_volume double
OrderCosts

Description
Bid price
Ask price
Bid volume

Ask volume

Order costs represents information about order action estimated costs. This information is only
estimated values and is depended from real execution quotes, time, etc.

Field Type

estimated_total co double

sts

cost_id string

categorie_costs List of
CategoryCost

aggregated_costs AggregatedCosts

OrderModel

Order model represents possible orders

72

Description

Estimated total cost for order action

Reference backend cost id

List of the cost categories. Filled only by validation request
with detailed information.

Aggregated costs for the order. Filled only by validation
request with validation information.

Field Description

NO_ORDER_MODEL Order model absent

MARKET Market order

LIMIT Limit order

STOP_MARKET Stop market order.

STOP_LIMIT Stop limit order
ONE_CANCELS_OTHER One cancels other market order
_MARKET

ONE_CANCELS_OTHER One cancels other limit order
_LIMIT

TRAILING_STOP_MARK Trailing stop market order

ET

TRAILING_STOP_LIMIT Trailing stop limit order

OrderReply

Order reply represents result of the add order or accept quote requests

Field Type Description

account TradingAccount Trading account

order Order Result order

order_costs OrderCosts Order costs. This field contains data if order costs are
requested

error Error Error information if occuirs

Orders

Orders represent pushed information about orders from one trading accounts

Field Type Description

account TradingAccount Trading account

orders List of Order List of the orders

error Error Error information if occuirs
OrderStatus

Order status represents status of the order

Field Description
NO_ORDER_STATUS Status is not defined
NEW New order

Field Description

OPEN Open order

EXECUTED Fully executed order
PARTIALLY_EXECUTED Partially executed order
CANCELED Canceled order

CANCELED_FORCED Canceled forced order
CANCELED_NOTED Canceling noted order
CANCELED_TIMEOUT Canceling timeout order

CHANGED Changed order

CHANGED_NOTED Changing noted order

INACTIVE Inactive order pro only

INACTIVE_NOTED Inactivation noted order pro only

STORNO Storno order

OrderSupplement

Order supplement is additional parameter by order definition

Field Description

NORMAL Normal order supplement

IMMIDIATE_OR_CANCE Immidiate or cancel order supplement

L

FILL _OR_KILL Fill or kill order supplement

ICEBERG Icesberg order supplement. Allowes to delivery amount in portions. pro
only

MARKET_PRICE Market place order supplement

OrderType

Order type represents different buy / sell order possibilities

Field Description

NO_ORDER _TYPE Order type is not defined

BUY Buy order type

SELL Sell order type

SHORT_SELL Short sell order type

SHORT_COVER Short cover order type. This type is not allowed as input parameter

FORCED_COVER Rorced cover order type. This type is not allowed as input parameter

74

PriceEntry

Field
open_price
close_price
high_price
low_price
volume
open_time

close_time

Type
double
double
double
double
double
Timestamp

Timestamp

QuoteEntry

Description

Open price

Close price

High price

Low price

Volume, can not be filled
Open time

Close time

Quote entry represents one answer with quote information from one stock exchange This reply
contains both buy and sell price. The quote reference can be used only with requested order type.
Second value is present only for information goals.

order type: BUY -> quote reference for buy price and reference,
sell price and reference are informative only
order type: SELL -> quote reference for sell price and reference,
buy price and reference are informative only

Field

stock_exchange

buy_price

buy_volume

sell_price
sell_volume

last_price

last_volume

last_time

currency

quote_reference

order_type

error

Type

StockExchange

double
double
double
double
double
double
Timestamp
string

string

OrderType

Error

QuoteReply

Description

Stock exchange where infomation was requested
Buy price

Buy volume

Sell price

Sell volume

Last price

Last volume

Date and time of the last price

Currency

Quote reference. Used for the accept quite request. Can be
empty if accept quote is not possible.

Used by call order type

Error information if occuirs

Quote reply represents data with quote answers from requested markets

75

Field Type Description
security_code SecurityCode Security code
order_type OrderType Order type
price_entries List of QuoteEntry List of the quites
error Error Error information if occuirs
QuoteRequest
Quote request represents data to get information about actual quotes on the selected makets
Field Type Description
access_token string Access token
security_code SecurityCode Security code
order_type OrderType Order type. Only BUY or SELL are allowed
amount double Amount of securities. Relevant to the short term markets
stock_exchanges List of List of stock exchanges
StockExchange

SecurityChangedField

SecurityChangedField represents information about changed fields during marked data event. Not
all field can be initialized. There are only changed fields. Some fields can be changed, but have
undefined state for example NaN.

Field

NONE
LAST_PRICE
LAST_VOLUME
LAST_DATE_TIME

Description

No data

Price of the last trade
Volume last trade

Last quote date and time

TODAY_NUM_TRADES Today number of tradings

TODAY_VOLUME
ASK_PRICE

ASK VOLUME
ASK_TIME
BID_PRICE
BID_VOLUME
BID_TIME
PREVIOUS_PRICE
PREVIOUS_DATE
RELATIVE_DIFF

76

Today volume

Last ask price

Volume last ask

Time of the last ask

Last bid price

Volume last bid

Time of the last bid

Quote of the previous trading day
Date of the previous trading day

Relative difference to the previous day

Field

ABS_DIFF
HIGH_PRICE
LOW_PRICE
OPEN_PRICE
WEEK_HIGH_PRICE
DATE_WEEK_HIGH
WEEK_LOW_PRICE
DATE_WEEK_LOW
MONTH_HIGH_PRICE
DATE_MONTH_HIGH
MONTH_LOW_PRICE
DATE_MONTH_LOW
YEAR_HIGH_PRICE
DATE_YEAR_HIGH
YEAR_LOW_PRICE
DATE_YEAR_LOW
LAST_ADDENDUM
TRADING_PHASE
INDICATIVE_PRICE

Description

Absolute difference to the previous day
Highest price

Lowest price

Price at opening

Highest price of the previous week

Date of highest price of the previous week
Lowest price of the previous week

Date of lowest price of the previous week
Highest price of the previous month

Date of highest price of the previous month
Lowest price of the previous month

Date of lowest price of the previous month
Highest price of the current year

Date of the highest price of the current year
Lowest price of the current year

Date of the lowest price of the current year
Addendum of the last price.

Trading phase

Indicative price

PREVALENCE_VOLUME Trading volume corresponding to the last price

SecurityClass

Represents information about security class

Field Description

NO_SECURITY_CLASS Security class is undefined on unknown

STOCK Stock security class

BOND Bond security class
CERTIFICATE Certificate security class
PRECIOUS_METAL Precious metal security class

PARTICIPATION_CERTI Participation certificate security class
FICATE

FUNDS Funds security class
MUTUAL_FUNDS
WARRANT Warrants security class

Mutual funds security class

FUTURE Futures security class

Field Description

INDEX Indexies security class
OTHERS Other securities security class
FUTURE_C1 Future c1 security class
FUTURE_C2 Future c2 security class
FUTURE_C3 Future c3 security class
TRACKERS Trackers security class
CURRENCY Currency security class
COMMODITY Commodity security class
SecurityCode

Field Type Description
code string Security code
code_type SecurityCodeType Security code type (WKN, ISIN, etc)

SecurityCodeType

Represents information about security code type Some of the types are refer to the market data
provider (FactSet)

Field Description
NO_CODE_TYPE Unknown code type
WKN WKN code type

ISIN ISIN code type

ID NOTATION Factset id notation
ID_OSI Factset id osi
ID_INSTRUMENT Factset id instrument
MNEMONIC Mnemonic or symbol
MNEMONIC_US US Mnemonic or symbol

SecurityInfoReply

Returns security information

Field Type Description

name string Security name

security_class SecurityClass Security class

security_codes List of Security codes with security type (WKN, ISIN, etc)
SecurityCode

78

Field Type Description

stock_exchange_in List of Stockexchange info (stock exchange, name)
fos SecurityStockExch

angelnfo
unit_note UnitNote Unit note
error Error Error information if occuirs
SecurityInfoRequest

Requests security information for security code

Field Type Description
access_token string Access token
security_code SecurityCode Security code with security type (WKN, ISIN)

SecurityMarketDataReply

Returns market data information

Field Type Description
security_with_stoc SecurityWithStock Security with stockExchange object (security code, stock
kexchange Exchange exchange)
changed_fields List of Security fields, which were changed
SecurityChangedFi
eld
currency string Currency
last_price double Fields Price of the last trade
last_volume double Volume last trade
last_date_time Timestamp Last quote date and time
today_num_trades int32 Today number of tradings
today_volume double Today volume
ask_price double Last ask price
ask_volume double Volume last ask
ask_time Timestamp Time of the last ask
bid_price double Last bid price
bid_volume double Volume last bid
bid_time Timestamp Time of the last bid
previous_price double Quote of the previous trading day
previous_date Date Date of the previous trading day

relative_diff double Relative difference to the previous day

Field Type Description

abs_diff double Absolute difference to the previous day
high_price double Highest price

low_price double Lowest price

open_price double Price at opening

week_high_price double Highest price of the previous week
date_week _high Date Date of highest price of the previous week
week_low_price double Lowest price of the previous week
date_week low Date Date of lowest price of the previous week
month_high_price double Highest price of the previous month
date_month_high Date Date of highest price of the previous month
month_low_price double Lowest price of the previous month
date_month low Date Date of lowest price of the previous month
year_high_price = double Highest price of the current year
date_year_high Date Date of the highest price of the current year
year_low_price double Lowest price of the current year
date_year_low Date Date of the lowest price of the current year
last_addendum string Addendum of the last price.

trading_phase TradingPhase Trading phase

indicative_price double Indicative price

prevalence_volum double Trading volume corresponding to the last price
e

error Error Error information if occuirs

SecurityMarketDataRequest

Requests market data values for defined security with stockexchange

Field Type Description

access_token string Access token

security_with_stoc SecurityWithStock Security with stockExchange object (security code, stock
kexchange Exchange exchange)

currency string Currency

SecurityOrderBookReply

SecurityOrderBookReply represents information with orderbook market data. Currently this
information is avialable for the Xetra stock exchange for the accepted for the second level market
data instruments

80

Field Type Description

security_with_stoc SecurityWithStock Security with stock exchange object (security code, stock

kexchange Exchange exchange)

currency string Currency of the order book entries
order_book_entrie List of List of the order book entries

S OrderBookEntry

error Error Error information if occuirs

SecurityOrderBookRequest

Requests orderbook data for security with stockexchange

Field Type Description

access_token string Access token

security_with_stoc SecurityWithStock Security with stockExchange object (security code, stock
kexchange Exchange exchange)

currency string Requested currency. If not filled used default currency.

Otherwise values will be converted to requested currency.

SecurityPriceHistoryReply

Returns history data for defined security

Field Type Description

security_with_stoc SecurityWithStock Security with stockExchange object (security code, stock
kexchange Exchange exchange)

currency string Currency

price_entries List of PriceEntry List of the price entries

error Error Error information if occuirs

SecurityPriceHistoryRequest

Requests history data for one security on one stockexchange in intraday or historical format

Field Type Description

access_token string Access token

security_with_stoc SecurityWithStock Security with stockExchange object (security code, stock
kexchange Exchange exchange)

days int32 Amount of the day in the past. This value should be

positive. Maximal value for the intraday resolution is 15.

time_resolution TimeResolution Time resolution for the data

81

SecurityStockExchangelnfo

Security stock exchange info represents trading information about one security on the one market

Field Type Description

stock_exchange StockExchange Stockexchange (id und issuer)

buy_limit_token LimitToken Possible limit token for buy orders

sell_limit token LimitToken Possible limit token for sell orders

buy_trading types List of Buy trading data (order models, order supplements,
TradingPossibility trailing notations)

sell_trading_types List of Sell trading data (order models, order supplements,
TradingPossibility trailing notations)

maximal order da Date Maximal order validity date

te

short mode ShortMode Short selling mode

SecurityWithStockExchange

Field Type Description
security_code SecurityCode Security code object
stock_exchange StockExchange Stock exchange object

Table 6. AccessService

Function Description

LoginReply = Validates client by the TAPI and gets access data
Login(LoginRequest)

LogoutReply = Invalidates client by the TAPI and gets logout result

Logout(LogoutRequest)

Table 7. AccountService

Function Description

TradingAccounts = Gets trading accounts

GetTradingAccounts(Ac

cessTokenRequest) @return TradingAccounts List of trading accounts

TradingAccountInform Subscribes one trading account for updates

ation «

StreamTradingAccount(@param TradingAccount Trading account for push

TradingAccountRequest

) @stream TradingAccountInformation Specific information for
subscribed account (balance, kredit line, etc.)

82

Function

TradingAccountTransa
ctions «
StreamTradingAccount
Transactions(TradingA
ccountRequest)

Table 8. DepotService
Function

DepotEntries «
StreamDepot(TradingA
ccountRequest)

Empty =
UpdateDepot(TradingA
ccountRequest)

Table 9. OrderService

Function

Orders «
StreamOrders(Trading
AccountRequest)

Empty =
UpdateOrders(Trading
AccountRequest)

QuoteReply =
GetQuote(QuoteReques
9]

OrderReply =
AcceptQuote(AcceptQu
oteRequest)

Description

Subscribes one trading account for the transactions updates
@param TradingAccount Trading account for push

@stream TradingAccountInformation Transactions list for subscribed
account

Description

Subscribes one trading account for the depot data updates
@param TradingAccount Trading account for push

@stream DepotEntries depot entries linked to the account

Initiates depot update action. All changes come by the StreamDepot
subscription. This function doesn’t wait for the action result.

@param TradingAccount Trading account for update

Description

Subscribes one trading account for orders updates
@param TradingAccount Trading account for push

@stream Orders Orders list for seleted account

Initiates orders update action. All changes come by the StreamOrders
subscription. This function doesn’t wait for the action result.

@param TradingAccount Trading account for update

Request market quote for the selected security on the selected stock
exchanges.

@param QuoteRequest quote request with interested security and stock
exchanges

@return QuoteReply quote reply with quotes

Sends accept quote order request to the short term market

@param AcceptQuoteRequest accept quote request with order
parameters

@return OrderReply result order or error

83

Function Description

OrderReply = Sends long term order to the market
AddOrder(AddOrderRe
quest) @param AddOrderRequest order request with order parameters

@return OrderReply result order or error

OrderReply = Sends order change request to the market

ChangeOrder(ChangeO

rderRequest) @param ChangeOrderRequest changed order request with order
parameters

@return OrderReply result order or error

OrderReply = Sends order cancel request to the market
CancelOrder(CancelOrd
erRequest) @param CancelOrderRequest cancel order request with order reference

@return OrderReply result order or error

OrderReply = Sends order activate request to the market. pro only

ActivateOrder(Activate

OrderRequest) @param ActivateOrderRequest activate order request with order
parameters

@return OrderReply result order or error

OrderReply = Sends order deactivate request to the market. pro only

DeactivateOrder(Deacti

vateOrderRequest) @param DeactivateOrderRequest deactivate order request with order
parameters

@return OrderReply result order or error

Table 10. SecurityService

Function Description

SecurityInfoReply = Gets security information about security

GetSecurityInfo(Securit

yInfoRequest) @param SecurityInfoRequest Request object with interested security

@return SecurityInfoReply Complete information about security

SecurityMarketDataRep Subscribes security with stock exchange for market data updates
ly «
StreamMarketData(Sec @param SecurityMarketDataRequest Market data request with
urityMarketDataReque interested security and stock exchange
st)
@stream SecurityMarketDataReply Reply with all market data values

84

Function

SecurityOrderBookRepl
y &

StreamOrderBook(Secu
rityOrderBookRequest)

CurrencyRateReply «
StreamCurrencyRate(C
urrencyRateRequest)

SecurityPriceHistoryRe
ply =
GetSecurityPriceHistor
y(SecurityPriceHistory
Request)

Description

Subscribes security with stock exchange for orderbook updates

@param SecurityOrderBookRequest Orderbook data request with
interested security and stock exchange

@stream SecurityOrderBookReply Reply with all orderbook values

Subscribes for currency rate from one currency to another currency.

@param SecurityOrderBookRequest currency rate request with
interested currencies from/to

@stream CurrencyRateReply reply with currency rate

Requests history data for one security on one stockexchange in intraday
or historical format

@param SecurityPriceHistoryRequest Data with security, stockexchange,
how many days and resolution

@return SecurityPriceHistoryReply List of the historical quotes or an
error

Table 11. StockExchangeService

Function

StockExchangeDescript
ions =
GetStockExchanges(Acc
essTokenRequest)

StockExchangeDescript
ion =
GetStockExchange(Stoc
kExchangeRequest)

ShortMode

Description

Gets predefined stockexchages

@return StockExchangeDescriptions list of stock exchange informations

Gets specific stock exchange
@param StockExchange Requested stock exchange

@return StockExchangeDescription Stock exchange information

Short mode gives information amout security shortability on the selected market.

Field
NO_SHORT_MODE
YES

NO
TEMPORARY_NO
INTRADAY
OVERNIGHT

Description

Undefined short selling
Short selling is possible

No short selling
Temporary no short selling
Intraday short selling
Overnight short selling

85

Field Description

INTRADAY_AND_OVER Intraday and Overnight short selling
NIGHT

StockExchange

Stock exchange data

Field Type Description
id string Stock exchange id
issuer string Stock exchange issuer. Can be null

StockExchangeDescription

Field Type Description

stock_exchange_in StockExchangeInf Stock exchange information
fo 0

error Error Error information if occuirs

StockExchangeDescriptions

Field Type Description
stock_exchange_in List of List with stock exchange information
fos StockExchangeInf
0
error Error Error

StockExchangelnfo

Field Type Description
stockExchange StockExchange Stock exchange object
name string Stock exchange name

StockExchangeRequest

Stock exchange request contains data that need to request stock exchange related data

Field Type Description
access_token string Access token
stock_exchange StockExchange Stock exchange

86

TimeResolution

Time resolution represents information about price aggregation

Field Description
NO_RESOLUTION Undefined resolution
TICK Tick resolution. intraday.

Be careful, in same cases there is a lot of data.

SECOND Second resolution intraday
MINUTE Minute resolution intraday
HOUR Hour resolution intraday
DAY Day resolution historic
Timestamp

A Timestamp represents a point in time independent of any time zone or calendar, represented as
seconds and fractions of seconds at nanosecond resolution in UTC Epoch time. It is encoded using
the Proleptic Gregorian Calendar which extends the Gregorian calendar backwards to year one. It
is encoded assuming all minutes are 60 seconds long, i.e. leap seconds are "smeared" so that no leap
second table is needed for interpretation. Range is from 0001-01-01T00:00:00Z to 9999-12-
31T23:59:59.9999999997. By restricting to that range, we ensure that we can convert to and from
RFC 3339 date strings. See https://www.ietf.org/rfc/rfc3339.txt.

Examples

Example 1: Compute Timestamp from POSIX time().

Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);

Example 2: Compute Timestamp from POSIX gettimeofday().

struct timeval tv;
gettimeofday(&tv, NULL);

Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);

Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().

87

https://www.ietf.org/rfc/rfc3339.txt

FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;

// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T700:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;

timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));

Example 4: Compute Timestamp from Java System.currentTimeMillis().

long millis = System.currentTimeMillis();

Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();

Example 5: Compute Timestamp from current time in Python.

timestamp = Timestamp()
timestamp.GetCurrentTime()

JSON Mapping

In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the
format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed
using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each.
The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional.
The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer
should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON
parser should be able to accept both UTC and other timezones (as indicated by an offset).

For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.

In JavaScript, one can convert a Date object to this format using the standard toISOString() method.
In Python, a standard datetime.datetime object can be converted to this format using strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%{fZ'. Likewise, in Java, one can use the Joda Time’s
ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this
format.

Timestamp represents date + time format

88

https://www.ietf.org/rfc/rfc3339.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString
https://docs.python.org/2/library/time.html#time.strftime
http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime--

Field Type

seconds int64
nanos int32
TradingAccount

Description

Represents seconds of UTC time since Unix epoch 1970-01-
01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-
12-31T23:59:59Z inclusive.

Non-negative fractions of a second at nanosecond
resolution. Negative second values with fractions must still
have non-negative nanos values that count forward in
time. Must be from 0 to 999,999,999 inclusive.

TradingAccount is trading account connected to the depot

Field Type
account_number string
depot_number string
name string
tradable bool

Description

Account number

Depot number

Name of the account owners

If account is tradable then true or false otherwise

TradingAccountInformation

TradingAccountInformation contains specific for this account information

Field Type

account TradingAccount
balance double
credit_limit double
buying_power double

credit_limit _intrad double

ay

buying_power_int double
raday

error Error

Description

Trading account
Account balance

Credit limit information
Buying power

Credit limit intraday information, pro only

Buyng power intraday, pro only

Error information if occuirs

TradingAccountRequest

Trading account request contains trading account related data

Field Type
access_token string

trading_account TradingAccount

Description
Access token

Trading account

89

TradingAccounts

TradingAccounts contains account information from current session

Field Type Description

accounts List of List of trading accounts
TradingAccount

error Error Error information if occuirs

TradingAccountTransactions

TradingAccountTransactions contains account transactions

Field Type Description

account TradingAccount Trading account

transactions List of Transaction List of transactions

error Error Error information if happened

TradingPhase

Represents stock exchange trading phase. Some values are refer to the Xetra stock exchange

Field Description

NONE Unknown trading phase
PRETRADE Pretrade trading phase
POSTTRADE Posttrade trading phase
START Start trading phase
END End trading phase
VOLA Vola trading phase
OCALL OCall trading phase
ICALL ICall trading phase
CCALL CCall trading phase
TRADE Trade trading phase

TRADE_INDICATIVE Trade indicative trading phase
TRADE_BEST_BID_ASK Trade best bid / ask trading phase

TRADE_AUCTION_NO_I Trade auction, but not indicative trading phase
NDICATIVE

TradingPossibility

Trading possibility represents allowed variants to trade on specific stock exchange. Each trading

90

possibility is a combination of the parameters. The list of the order possibilites is all possible
combinations:

MARKET ; NORMAL ; ABSOLUTE ; {KASSA; AUCTION}
LIMIT;NORMAL;ABSOLUTE; {KASSA;AUCTION}
MARKET ; NORMAL ; RELATIVE ; {KASSA; AUCTION}
LIMIT;NORMAL;RELATIVE;{KASSA;AUCTION}

Field Type Description
order_model OrderModel Order model
order_supplement OrderSupplement Order supplement
trailing_notation TrailingNotation Trailing notation

cash_quotations List of List of allowed cash_quatations
CashQuotation

TradingState

Trading state represents information about tradability. Security can be tradable or not (ex. index)

Field Description
NO_TRADING_STATE Trading state is not defined
TRADABLE Tradable state

NOT _TRADABLE Not tradable state

TrailingNotation

Trailing notation represent notation type by trailing orders

Field Description
NO_TRAILING_NOTATI Trailing notation is not defined
ON

ABSOLUTE Absolute order notation
RELATIVE Relative order notation
Transaction

Transaction contains onformation about one transaction

Field Type Description
transaction_date Date Transaction date
amount double Amount value

91

Field Type Description

opponent string Transaction opponent
information string Information about transaction
value_date Date Value date

UnitNote

Unit node type

Field Description

NO_UNIT_NOTE
PIECE

Unit note is not defined

Piece unit note

PERCENT Percent unit node. Pieces = Percent/100
PERMIL Permile unit node. Pieces = Percent/1000
POINTS Points unit node

MISK Misk unit node

Validation

Validation type for the order actions

Field Description

WITHOUT_VALIDATIO Order action will routed directly to the market.
N

VALIDATE_ONLY Order will checked by the backend system, but not will be routed to

market

VALIDATE_WITH_TOT Order will checked by the backend system, but not will be routed to
AL_COSTS market. Additionally will be requested estimated order action total costs.

VALIDATE_WITH_DET Order will checked by the backend system, but not will be routed to
AIL_COSTS market. Additionally will be requested estimated order action detail costs.

TOTAL_COSTS_ONLY For the order will be requested estimated order action total costs. No
backend system validation is processed.

Questions and Answers

Why is used GRPC engine?

The GRPC is fastest engine for push and pull messaging with building security support. It allowes
to reduce time for requests execution (ex. add order) and cares about low level communication.

Is will be supported another languages?

We delivery original protobuf protocol description. It can be used for the code generation for
other programming languages like C++, Python, Go, Ruby, Node.js, Android Java, Objective-C,

92

PHP, Dart and Web. For more information please refer to the grpc.io

Is it planned to extend TAPI?

If we see an interest from the customers to use additional functionality, then TAPI can be
extended.

Where I can ask questions / get additional information about TAPI?

Please use next link or refer to the support team.

93

https://grpc.io/
https://wissen.consorsbank.de/t5/Trading-API-Family-Friends/gp-p/BNPP_GHM

	Trading API
	Table of Contents
	Get started
	Overview
	Requirements
	License
	Communication
	Security
	Configuration
	Session TAN

	Usage of the Trading API
	Source code
	Initialization
	Services and functions definition
	Create services
	Objects creation
	Pull and push functions
	Pull requests
	Push requests
	Push subscriptions

	Services and functions
	Access service
	Client validation
	Client invalidation

	Account service
	Get list of trading accounts
	Stream account information changes
	Stream account transactions changes

	Stock exchange service
	Get information about all stock exchanges
	Get information about specific stock exchange

	Depot service
	Stream depot changes
	Update depot

	Security service
	Securities access
	Get security information
	Stream market data information
	Stream orderbook data
	Stream currency rate
	Get security historic data

	Order service
	Order types and parameters
	Stream orders
	Update orders
	Get securities quotes
	Accept quote
	Add order
	Change order
	Cancel order
	Activate order
	Deactivate order
	Order costs

	Errors
	Objects and types description
	AcceptQuoteRequest
	AccessTokenRequest
	ActivateOrderRequest
	AggregatedCosts
	AddOrderRequest
	CancelOrderRequest
	CashQuotation
	CategoryCost
	ChangeOrderRequest
	CurrencyRateReply
	CurrencyRateRequest
	Date
	DeactivateOrderRequest
	DepotEntries
	DepotEntry
	DepotPosition
	DetailCost
	Empty
	Error
	LimitToken
	LoginReply
	LoginRequest
	LogoutReply
	LogoutRequest
	Order
	OrderBookEntry
	OrderCosts
	OrderModel
	OrderReply
	Orders
	OrderStatus
	OrderSupplement
	OrderType
	PriceEntry
	QuoteEntry
	QuoteReply
	QuoteRequest
	SecurityChangedField
	SecurityClass
	SecurityCode
	SecurityCodeType
	SecurityInfoReply
	SecurityInfoRequest
	SecurityMarketDataReply
	SecurityMarketDataRequest
	SecurityOrderBookReply
	SecurityOrderBookRequest
	SecurityPriceHistoryReply
	SecurityPriceHistoryRequest
	SecurityStockExchangeInfo
	SecurityWithStockExchange
	ShortMode
	StockExchange
	StockExchangeDescription
	StockExchangeDescriptions
	StockExchangeInfo
	StockExchangeRequest
	TimeResolution
	Timestamp
	TradingAccount
	TradingAccountInformation
	TradingAccountRequest
	TradingAccounts
	TradingAccountTransactions
	TradingPhase
	TradingPossibility
	TradingState
	TrailingNotation
	Transaction
	UnitNote
	Validation

	Questions and Answers

